Polymorphism in miR-31 and miR-584 binding site in the angiotensinogen gene differentially influences body fat distribution in both sexes
Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
PubMed
26319141
PubMed Central
PMC4549340
DOI
10.1007/s12263-015-0488-9
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Angiotensinogen (AGT), its active fragments and microRNA-31 (miR-31) play an important role in adipocyte differentiation. AGT contains a miR-31 polymorphic binding site. We hypothesize that the rs7079 polymorphism in the miR-31/584 binding site of the AGT gene could influence body fat distribution. A total of 751 subjects (195 men, 556 women) were enrolled in the study. The rs7079 genotypes were determined by qRT-PCR. Anthropometric measurements were taken on all subjects, who were subsequently divided into two groups: obese (>30 kg m(-2)) and non-obese (<30 kg m(-2)). Linear regression models were created to determine the contributions of sex, obesity status and rs7079 to all measured parameters. Adding the rs7079 genotype significantly contributed to the linear regression model for waist circumference (p = 0.013), hip circumference (p = 0.018) and supraspinal skin-fold thickness (p = 1 × 10(-3)). Differences between sexes and between the obese and non-obese groups were observed. Waist circumference was lower in men carrying the A allele (p = 0.022); hip circumference was higher only in obese women carrying the A allele (p = 0.015). While men carrying the A allele had lower supraspinal skin-fold thickness (p = 0.022), this parameter was found to be higher in A allele carrying women (p = 3 × 10(-3)). The higher total sum of skin-fold thickness in A allele carrying women was restricted to obese individuals (p = 0.028). The presence of the A allele was associated with both lower tricipital skin-fold thickness in non-obese women (p = 0.023) and a trend of higher thickness in non-obese men (p = 0.065). Significant associations of rs7079 in the AGT gene and body fat distribution were observed. The distribution followed opposing patterns in both sexes.
Zobrazit více v PubMed
Al-Najai Mohammed, Muiya Paul, Tahir Asma I, Elhawari Samar, Gueco Daisy, Andres Editha, Mazhar Nejat, Altassan Nada, Alshahid Maie, Dzimiri Nduna. Association of the angiotensinogen gene polymorphism with atherosclerosis and its risk traits in the Saudi population. BMC Cardiovasc Disord. 2013;13:17. doi: 10.1186/1471-2261-13-17. PubMed DOI PMC
Ding Y, Stec DE, Sigmund CD. Genetic evidence that lethality in angiotensinogen-deficient mice is due to loss of systemic but not renal angiotensinogen. J Biol Chem. 2001;276(10):7431–7436. doi: 10.1074/jbc.M003892200. PubMed DOI
Dusserre E, Moulin P, Vidal H. Differences in mRNA expression of the proteins secreted by the adipocytes in human subcutaneous and visceral adipose tissues. Biochim Biophys Acta. 2000;1500(1):88–96. doi: 10.1016/S0925-4439(99)00091-5. PubMed DOI
Elks Cathy E, den Hoed Marcel, Zhao Jing Hua, Sharp Stephen J, Wareham Nicholas J, Loos Ruth J F, Ong Ken K. Variability in the heritability of Body Mass Index: a systematic review and meta-regression. Front Endocrinol. 2012;3:29. doi: 10.3389/fendo.2012.00029. PubMed DOI PMC
Engeli Stefan, Böhnke Jana, Gorzelniak Kerstin, Janke Jürgen, Schling Petra, Bader Michael, Luft Friedrich C, Sharma Arya M. Weight loss and the renin-angiotensin-aldosterone system. Hypertension. 2005;45(3):356–362. doi: 10.1161/01.HYP.0000154361.47683.d3. PubMed DOI
Fang Yu-Jing, Han-Bing Deng G, Thomas Neil, Tzang Chi H, Li Cai-Xia, Zong-Li Xu, Yang Mengsu, Tomlinson Brian. Linkage of angiotensinogen gene polymorphisms with hypertension in a Sibling Study of Hong Kong Chinese. J Hypertens. 2010;28(6):1203–1209. PubMed PMC
Ge Q, Brichard S, Yi X, Li QF. microRNAs as a new mechanism regulating adipose tissue inflammation in obesity and as a novel therapeutic strategy in the metabolic syndrome. J Immunol Res. 2014;2014:987285. doi: 10.1155/2014/987285. PubMed DOI PMC
Ghorai Atanu, Ghosh Utpal. miRNA gene counts in chromosomes vary widely in a species and biogenesis of miRNA largely depends on transcription or post-transcriptional processing of coding genes. Front Genet. 2014;5:100. doi: 10.3389/fgene.2014.00100. PubMed DOI PMC
GTEx Consortium The genotype-tissue expression (GTEx) project. Nat Genet. 2013;45(6):580–585. doi: 10.1038/ng.2653. PubMed DOI PMC
International HapMap Consortium The international HapMap project. Nature. 2003;426(6968):789–796. doi: 10.1038/nature02168. PubMed DOI
Kelly Gabrielle E, Murrin Celine, Viljoen Karien, O’Brien John, Kelleher Cecily. Body Mass Index is associated with the maternal lines but height is heritable across family lines in the Lifeways Cross-Generation Cohort Study. BMJ Open. 2014;4(12):e005732. doi: 10.1136/bmjopen-2014-005732. PubMed DOI PMC
Kouyama Ryuji, Suganami Takayoshi, Nishida Junko, Tanaka Miyako, Toyoda Takuya, Kiso Minako, Chiwata Tsuyoshi, et al. Attenuation of diet-induced weight gain and adiposity through increased energy expenditure in mice lacking angiotensin II type 1a receptor. Endocrinology. 2005;146(8):3481–3489. doi: 10.1210/en.2005-0003. PubMed DOI
Massiéra F, Bloch-Faure M, Ceiler D, Murakami K, Fukamizu A, Gasc JM, Quignard-Boulange A, et al. Adipose angiotensinogen is involved in adipose tissue growth and blood pressure regulation. FASEB J. 2001;15(14):2727–2729. PubMed
Mopidevi Brahmaraju, Ponnala Madhusudhan, Kumar Ashok. Human angiotensinogen +11525 C/A polymorphism modulates its gene expression through microRNA binding. Physiol Genomics. 2013;45(19):901–906. doi: 10.1152/physiolgenomics.00056.2013. PubMed DOI PMC
Morandi Anita, Meyre David, Lobbens Stéphane, Kleinman Ken, Kaakinen Marika, Rifas-Shiman Sheryl L, Vatin Vincent, et al. Estimation of newborn risk for child or adolescent obesity: lessons from longitudinal birth cohorts. PLoS ONE. 2012;7(11):e49919. doi: 10.1371/journal.pone.0049919. PubMed DOI PMC
Nakamura Akio. Genotypes of the renin-angiotensin system and glucocorticoid complications. Pediatr Int. 2015;57(1):72–78. doi: 10.1111/ped.12434. PubMed DOI
Oberbach Andreas, Schlichting Nadine, Neuhaus Jochen, Kullnick Yvonne, Lehmann Stefanie, Heinrich Marco, Dietrich Arne, Mohr Friedrich Wilhelm, von Bergen Martin, Baumann Sven. Establishing a reliable multiple reaction monitoring-based method for the quantification of obesity-associated comorbidities in serum and adipose tissue requires intensive clinical validation. J Proteome Res. 2014;13(12):5784–5800. doi: 10.1021/pr500722k. PubMed DOI
Okada Sadanori, Kozuka Chisayo, Masuzaki Hiroaki, Yasue Shintaro, Ishii-Yonemoto Takako, Tanaka Tomohiro, Yamamoto Yuji, et al. Adipose tissue-specific dysregulation of angiotensinogen by oxidative stress in obesity. Metab, Clin Exp. 2010;59(9):1241–1251. doi: 10.1016/j.metabol.2009.11.016. PubMed DOI PMC
Ortega Francisco José, Moreno María, Mercader Josep María, Moreno-Navarrete José María, Fuentes-Batllevell Núria, Sabater Mònica, Ricart Wifredo, Fernández-Real José Manuel. Inflammation triggers specific microRNA profiles in human adipocytes and macrophages and in their supernatants. Clin Epigenetics. 2015;7(1):49. doi: 10.1186/s13148-015-0083-3. PubMed DOI PMC
Palmer Biff F, Clegg Deborah J. The sexual dimorphism of obesity. Mol Cell Endocrinol. 2015;402C:113–119. doi: 10.1016/j.mce.2014.11.029. PubMed DOI PMC
Park Sungmi, Liu Xuebo, Davis Deborah R, Sigmund Curt D. Gene trapping uncovers sex-specific mechanisms for upstream stimulatory factors 1 and 2 in angiotensinogen expression. Hypertension. 2012;59(6):1212–1219. doi: 10.1161/HYPERTENSIONAHA.112.192971. PubMed DOI PMC
Park Sungmi, Ko-Ting Lu, Liu Xuebo, Chatterjee Tapan K, Rudich Steven M, Weintraub Neal L, Kwitek Anne E, Sigmund Curt D. Allele-specific expression of angiotensinogen in human subcutaneous adipose tissue. Hypertension. 2013;62(1):41–47. doi: 10.1161/HYPERTENSIONAHA.113.01330. PubMed DOI PMC
Procopciuc Lucia Maria, Sitar-Tăut Adela, Pop Dana, Sitar-Tăut Dan-Andrei, Olteanu Ileana, Zdrenghea Dumitru. Renin angiotensin system polymorphisms in patients with metabolic syndrome (MetS) Eur J Intern Med. 2010;21(5):414–418. doi: 10.1016/j.ejim.2010.06.001. PubMed DOI
Richardson Kris, Lai Chao-Qiang, Parnell Laurence D, Lee Yu-Chi, Ordovas Jose M. A genome-wide survey for SNPs altering microRNA seed sites identifies functional candidates in GWAS. BMC Genom. 2011;12:504. doi: 10.1186/1471-2164-12-504. PubMed DOI PMC
Rieger Jessica K, Klein Kathrin, Winter Stefan, Zanger Ulrich M. Expression variability of absorption, distribution, metabolism, excretion-related microRNAs in human liver: influence of nongenetic factors and association with gene expression. Drug Metab Dispos. 2013;41(10):1752–1762. doi: 10.1124/dmd.113.052126. PubMed DOI
Rihacek Ivan, Frana Petr, Plachy Martin, Kianicka Bohuslav, Soucek Miroslav, Vasku Anna. 24 hour ambulatory blood pressure values corresponding to office blood pressure value of 130/80 mm Hg. Kardiologia Polska. 2013;71(7):675–680. doi: 10.5603/KP.2013.0153. PubMed DOI
Santos SHS, Fernandes LR, Mario EG, Ferreira AVM, Pôrto LCJ, Alvarez-Leite JI, Botion LM, Bader M, Alenina N, Santos RAS. Mas deficiency in FVB/N mice produces marked changes in lipid and glycemic metabolism. Diabetes. 2008;57(2):340–347. doi: 10.2337/db07-0953. PubMed DOI
Silventoinen Karri, Hasselbalch Ann Louise, Lallukka Tea, Bogl Leonie, Pietiläinen Kirsi H, Heitmann Berit L, Schousboe Karoline, et al. Modification effects of physical activity and protein intake on heritability of body size and composition. Am J Clin Nutr. 2009;90(4):1096–1103. doi: 10.3945/ajcn.2009.27689. PubMed DOI PMC
Son YH, Ka S, Kim AY, Kim JB. Regulation of adipocyte differentiation via microRNAs. Endocrinol Metab. 2014;29(2):122–135. doi: 10.3803/EnM.2014.29.2.122. PubMed DOI PMC
Stavréus-Evers A, Parini P, Freyschuss B, Elger W, Reddersen G, Sahlin L, Eriksson H. Estrogenic influence on the regulation of hepatic estrogen receptor-alpha and serum level of angiotensinogen in female rats. J Steroid Biochem Mol Biol. 2001;78(1):83–88. doi: 10.1016/S0960-0760(01)00077-2. PubMed DOI
Sun Fenyong, Wang Jiayi, Pan Qiuhui, Yongchun Yu, Zhang Yue, Yang Wan Ju, Wang Xiaoyan Li, Hong An. Characterization of function and regulation of miR-24-1 and miR-31. Biochem Biophys Res Commun. 2009;380(3):660–665. doi: 10.1016/j.bbrc.2009.01.161. PubMed DOI
Szymańska Ewa, Bouwman Jildau, Strassburg Katrin, Vervoort Jacques, Kangas Antti J, Soininen Pasi, Ala-Korpela Mika, et al. Gender-dependent associations of metabolite profiles and body fat distribution in a healthy population with central obesity: towards metabolomics diagnostics. OMICS. 2012;16(12):652–667. doi: 10.1089/omi.2012.0062. PubMed DOI
Takakura Y, Yoshida T, Yoshioka K, Umekawa T, Kogure A, Toda H, Kagawa K, Fukui S, Yoshikawa T. Angiotensinogen gene polymorphism (Met235Thr) influences visceral obesity and insulin resistance in obese Japanese women. Metab, Clin Exp. 2006;55(6):819–824. doi: 10.1016/j.metabol.2006.02.008. PubMed DOI
Tang Y-F, Zhang Y, Li X-Y, Li C, Tian W, Liu L. Expression of miR-31, miR-125b-5p, and miR-326 in the adipogenic differentiation process of adipose-derived stem cells. OMICS. 2009;13(4):331–336. doi: 10.1089/omi.2009.0017. PubMed DOI
Van Harmelen V, Ariapart P, Hoffstedt J, Lundkvist I, Bringman S, Arner P. Increased adipose angiotensinogen gene expression in human obesity. Obes Res. 2000;8(4):337–341. doi: 10.1038/oby.2000.40. PubMed DOI
Van Harmelen V, Elizalde M, Ariapart P, Bergstedt-Lindqvist S, Reynisdottir S, Hoffstedt J, Lundkvist I, Bringman S, Arner P. The association of human adipose angiotensinogen gene expression with abdominal fat distribution in obesity. Int J Obes Relat Metab Disord. 2000;24(6):673–678. doi: 10.1038/sj.ijo.0801217. PubMed DOI
Vasků A, Soucek M, Tschöplová S, Stejskalová A. An association of BMI with A (−6) G, M235T and T174 M polymorphisms in angiotensinogen gene in essential hypertension. J Hum Hypertens. 2002;16(6):427–430. doi: 10.1038/sj.jhh.1001409. PubMed DOI
Waalen Jill. The genetics of human obesity. Transl Res. 2014;164(4):293–301. doi: 10.1016/j.trsl.2014.05.010. PubMed DOI
Wang Tao, Jia Weiping, Cheng Hu. Advancement in genetic variants conferring obesity susceptibility from genome-wide association studies. Front Med. 2014 PubMed
Yasue Shintaro, Masuzaki Hiroaki, Okada Sadanori, Ishii Takako, Kozuka Chisayo, Tanaka Tomohiro, Fujikura Junji, et al. Adipose tissue-specific regulation of angiotensinogen in obese humans and mice: impact of nutritional status and adipocyte hypertrophy. Am J Hypertens. 2010;23(4):425–431. doi: 10.1038/ajh.2009.263. PubMed DOI PMC
Yvan-Charvet Laurent, Massiéra Florence, Lamandé Noël, Ailhaud Gérard, Teboul Michèle, Moustaid-Moussa Naima, Gasc Jean-Marie, Quignard-Boulangé Annie. Deficiency of angiotensin type 2 receptor rescues obesity but not hypertension induced by overexpression of angiotensinogen in adipose tissue. Endocrinology. 2009;150(3):1421–1428. doi: 10.1210/en.2008-1120. PubMed DOI