Disparate ultrafast dynamics of itinerant and localized magnetic moments in gadolinium metal
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
26355196
PubMed Central
PMC4579838
DOI
10.1038/ncomms9262
PII: ncomms9262
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The Heisenberg-Dirac intra-atomic exchange coupling is responsible for the formation of the atomic spin moment and thus the strongest interaction in magnetism. Therefore, it is generally assumed that intra-atomic exchange leads to a quasi-instantaneous aligning process in the magnetic moment dynamics of spins in separate, on-site atomic orbitals. Following ultrashort optical excitation of gadolinium metal, we concurrently record in photoemission the 4f magnetic linear dichroism and 5d exchange splitting. Their dynamics differ by one order of magnitude, with decay constants of 14 versus 0.8 ps, respectively. Spin dynamics simulations based on an orbital-resolved Heisenberg Hamiltonian combined with first-principles calculations explain the particular dynamics of 5d and 4f spin moments well, and corroborate that the 5d exchange splitting traces closely the 5d spin-moment dynamics. Thus gadolinium shows disparate dynamics of the localized 4f and the itinerant 5d spin moments, demonstrating a breakdown of their intra-atomic exchange alignment on a picosecond timescale.
Department of Physics and Astronomy Uppsala University PO Box 516 75120 Uppsala Sweden
Fachbereich Physik Freie Universität Berlin Arnimallee 14 14195 Berlin Germany
Fachbereich Physik Universität Konstanz 78457 Konstanz Germany
Zobrazit více v PubMed
Stöhr J. & Siegmann H. C. Magnetism—From Fundamentals to Nanoscale Dynamics Vol. 152, Springer Series in Solid State Science (2006).
Müller G. M. et al. Spin polarization in half-metals probed by femtosecond spin excitation. Nat. Mater. 8, 56–61 (2009). PubMed
Koopmans B. et al. Explaining the paradoxical diversity of ultrafast laser-induced demagnetization. Nat. Mater. 9, 259–261 (2010). PubMed
Boeglin C. et al. Distinguishing the ultrafast dynamics of spin and orbital moments in solids. Nature 465, 458–461 (2010). PubMed
Wang J. et al. Memory effects in photoinduced femtosecond magnetization rotation in ferromagnetic GaMnAs. Appl. Phys. Lett. 94, 021101 (2009).
Kirilyuk A., Kimel A. V. & Rasing T. Laser-induced magnetization dynamics and reversal in ferrimagnetic alloys. Rep. Prog. Phys. 76, 026501 (2013). PubMed
Li T. et al. Femtosecond switching of magnetism via strongly correlated spin-charge quantum excitations. Nature 496, 69–73 (2013). PubMed
Radu I. et al. Transient ferromagnetic-like state mediating ultrafast reversal of antiferromagnetically coupled spins. Nature 472, 205–208 (2011). PubMed
Mathias S. et al. Probing the timescale of the exchange interaction in a ferromagnetic alloy. Proc. Natl Acad. Sci. USA 109, 4792–4797 (2012). PubMed PMC
Vodungbo B. et al. Laser-induced ultrafast demagnetization in the presence of a nanoscale magnetic domain network. Nat. Commun. 3, 999 (2012). PubMed
Pfau B. et al. Ultrafast optical demagnetization manipulates nanoscale spin structure in domain walls. Nat. Commun. 3, 1100 (2012). PubMed PMC
Graves C. E. et al. Nanoscale spin reversal by non-local angular momentum transfer following ultrafast laser excitation in ferrimagnetic GdFeCo. Nat. Mater. 12, 293–297 (2013). PubMed
Bergeard N. et al. Ultrafast angular momentum transfer in multisublattice ferrimagnets. Nat. Commun. 5, 3466 (2014). PubMed
Khorsand A. R. et al. Element-specific probing of ultrafast spin dynamics in multisublattice magnets with visible light. Phys. Rev. Lett. 110, 107205 (2013). PubMed
Eschenlohr A. et al. Role of spin-lattice coupling in the ultrafast demagnetization of Gd1−xTbx alloys. Phys. Rev. B 89, 214423 (2014).
Perfetti L. et al. Time evolution of the electronic structure of 1t −TaS2 through the insulator-metal transition. Phys. Rev. Lett. 97, 067402 (2006). PubMed
Schmitt F. et al. Transient electronic structure and melting of a charge density wave in TbTe3. Science 321, 1649–1652 (2008). PubMed
Rohwer T. et al. Collapse of long-range charge order tracked by time-resolved photoemission at high momenta. Nature 471, 490 (2011). PubMed
Smallwood C. L. et al. Tracking Cooper pairs in a cuprate superconductor by ultrafast angle-resolved photoemission. Science 336, 1137 (2012). PubMed
Zhang W. et al. Ultrafast quenching of electron-boson interaction and superconducting gap in a cuprate superconductor. Nat. Commun. 5, 4959 (2014). PubMed
Wegkamp D. et al. Instantaneous band gap collapse in photoexcited VO2 due to photocarrier doping. Phys. Rev. Lett. 113, 216401 (2014). PubMed
Frietsch B. et al. A high-order harmonic generation apparatus for time- and angle-resolved photoelectron spectroscopy. Rev. Sci. Inst. 84, 075106 (2013). PubMed
Starke K. Magnetic Dichroism in Core-Level Photoemission. Springer Tracts in Modern Physics Springer (2000).
Fauster T. & Himpsel F. J. Energy dependence of cross sections in inverse photoemission. Phys. Rev. B 30, 1874–1876 (1984).
Loukakos P. A. et al. Dynamics of the self-energy of the Gd(0001) surface state probed by femtosecond photoemission spectroscopy. Phys. Rev. Lett. 98, 097401 (2007). PubMed
Carley R. et al. Femtosecond laser excitation drives ferromagnetic gadolinium out of magnetic equilibrium. Phys. Rev. Lett. 109, 0574012 (2012). PubMed
Döbrich K. M., Bostwick A., Rotenberg E. & Kaindl G. Change of the Fermi surface of Gd metal upon magnetic ordering as seen via angle-resolved photoelectron spectroscopy. Phys. Rev. B 81, 012401 (2010).
Kurz P., Bihlmayer G. & Blügel S. Magnetism and electronic structure of hcp Gd and the Gd(0001) surface. J. Phys. Condens. Matter 14, 6353 (2002).
Sandratskii L. M. Exchange splitting of surface and bulk electronic states in excited magnetic states of Gd: first-principles study. Phys. Rev. B 90, 184406 (2014).
Melnikov A. et al. Nonequilibrium magnetization dynamics of gadolinium studied by magnetic linear dichroism in time-resolved 4f core-level photoemission. Phys. Rev. Lett. 100, 107202 (2008). PubMed
Krupin O. Dichroism and Rashba Effect at Magnetic Crystal Surfaces of Rare-Earth Metals. PhD. thesis, Freie Univ. Berlin (2004). http://www.diss.fu-berlin.de/diss/receive/FUDISS_thesis_000000003802.
Sultan M., Atxitia U., Melnikov A., Chubykalo-Fesenko O. & Bovensiepen U. Electron- and phonon-mediated ultrafast magnetization dynamics of Gd(0001). Phys. Rev. B 85, 184407 (2012).
Maiti K., Malagoli M. C., Dallmeyer A. & Carbone C. Finite temperature magnetism in Gd: evidence against a Stoner behavior. Phys. Rev. Lett. 88, 167205 (2002). PubMed
Khmelevskyi S., Turek I. & Mohn P. Spontaneous volume magnetostriction and non-Stoner behavior of the valence band in pure hcp Gd. Phys. Rev. B 70, 132401 (2004).
Wienholdt S., Hinzke D., Carva K., Oppeneer P. M. & Nowak U. Orbital-resolved spin model for thermal magnetization switching in rare-earth-based ferrimagnets. Phys. Rev. B 88, 020406 (2013).
Beaurepaire E., Merle J.-C., Daunois A. & Bigot J.-Y. Ultrafast spin dynamics in ferromagnetic nickel. Phys. Rev. Lett. 76, 4250–4253 (1996). PubMed
Kazantseva N., Nowak U., Chantrell R., Hohlfeld J. & Rebei A. Slow recovery of the magnetisation after a sub-picosecond heat pulse. Europhys. Lett. 81, 27004 (2008).
Nowak U. in Handbook of Magnetism and Advanced Magnetic Materials (eds Kronmüller H., Parkin S. Vol. 2, John Wiley & Sons (2007).
Platow W., Anisimov A. N., Dunifer G. L., Farle M. & Baberschke K. Correlations between ferromagnetic-resonance linewidths and sample quality in the study of metallic ultrathin films. Phys. Rev. B 58, 5611–5621 (1998).
Anisimov S. I., Kapeliovich B. L. & Perelman T. L. Electron emission from metal surfaces exposed to ultrashort laser pulses. Sov. Phys. JETP 39, 375–377 (1974).
Bovensiepen U. Coherent and incoherent excitations of the Gd(0001) surface on ultrafast timescales. J. Phys. Condens. Matter 19, 083201 (2007).
Vaterlaus A., Beutler T. & Meier F. Spin-lattice relaxation time of ferromagnetic gadolinium determined with time-resolved spin-polarized photoemission. Phys. Rev. Lett. 67, 3314–3317 (1991). PubMed
Hübner W. & Bennemann K. H. Simple theory for spin-lattice relaxation in metallic rare-earth ferromagnets. Phys. Rev. B 53, 3422–3427 (1996). PubMed
Battiato M., Carva K. & Oppeneer P. M. Theory of laser-induced ultrafast superdiffusive spin transport in layered heterostructures. Phys. Rev. B 86, 024404 (2012).
Wietstruk M. et al. Hot-electron-driven enhancement of spin-lattice coupling in Gd and Tb 4f ferromagnets observed by femtosecond x-ray magnetic circular dichroism. Phys. Rev. Lett. 106, 127401 (2011). PubMed
Sultan M., Melnikov A. & Bovensiepen U. Ultrafast magnetization dynamics of Gd(0001): bulk versus surface. Phys. Status Solidi B 248, 2323 (2011).
Eschenlohr A. et al. Ultrafast spin transport as key to femtosecond demagnetization. Nat. Mater. 12, 332–336 (2013). PubMed
Kim J.-W., Vomir M. & Bigot J.-Y. Ultrafast magnetoacoustics in nickel films. Phys. Rev. Lett. 109, 166601 (2012). PubMed
Bozorth R. M. & Wakiyama T. Magnetostriction and anomalous thermal expansion of single crystals of gadolinium. J. Appl. Phys. 34, 1351–1352 (1963).
Darnell F. J. Temperature dependence of lattice parameters for Gd, Dy and Ho. Phys. Rev. 130, 1825–1828 (1963).
Cywiński L. & Sham L. J. Ultrafast demagnetization in the sp-d model: a theoretical study. Phys. Rev. B 76, 045205 (2007).
Beaulieu N. et al. Probing ultrafast dynamics in electronic structure of epitaxial Gd(0001) on W(110). J. Electron Spectrosc. Relat. Phenom. 189, 40–45 (2013).
Turek I., Drchal V., Kudrnovský J., Šob M. & Weinberger P. Electronic Structure of Disordered Alloys, Surfaces and Interfaces Kluwer (1997).
von Barth U. & Hedin L. A local exchange-correlation potential for the spin polarized case. J. Phys. C Solid State Phys. 5, 1629–1642 (1972).
Turek I., Kudrnovský J., Bihlmayer G. & Blügel S. Ab initio theory of exchange interactions and the Curie temperature of bulk Gd. J. Phys. Condens. Matter 15, 2771–2782 (2003).
Liechtenstein A. I., Katsnelson M. I., Antropov V. P. & Gubanov V. A. Local spin density functional approach to the theory of exchange interactions in ferromagnetic metals and alloys. J. Magn. Magn. Mater. 67, 65–74 (1987).
Halilov S. V., Eschrig H., Perlov A. Y. & Oppeneer P. M. Adiabatic spin dynamics from spin-density-functional theory: application to Fe, Co and Ni. Phys. Rev. B 58, 293–302 (1998).
Turek I., Kudrnovský J., Drchal V. & Bruno P. Exchange interactions, spin waves, and transition temperatures in itinerant magnets. Philos. Mag. 86, 1713–1752 (2006).
Kudrnovský J., Drchal V. & Bruno P. Magnetic properties of fcc Ni-based transition metal alloys. Phys. Rev. B 77, 224422 (2008).
Kaganov M. I., Lifshitz I. M. & Tanatarov L. V. Relaxation between electrons and the crystalline lattice. Sov. Phys. JETP 4, 173–178 (1957).