Study of phenolic profile and antioxidant activity in selected Moravian wines during winemaking process by FT-IR spectroscopy
Status PubMed-not-MEDLINE Jazyk angličtina Země Indie Médium print-electronic
Typ dokumentu časopisecké články
PubMed
26396385
PubMed Central
PMC4573106
DOI
10.1007/s13197-014-1644-8
PII: 1644
Knihovny.cz E-zdroje
- Klíčová slova
- Antioxidant activity, Chemometrics, FT-IR spectroscopy, Phenolic compounds,
- Publikační typ
- časopisecké články MeSH
Wine belongs to a family of products where the quality matters. Its quality can be in principle verified using diverse physicochemical approaches, including the determination of various chemical compounds generally accepted as chemical markers of product quality. Example of such applicable compounds is a family derived from phenols. Next to a more classical approach, infrared spectroscopy can play an important role in this game. Here we sought to develop an easy to use, ultra-fast and robust method based on FT-IR with some important advantages including lower sample and solvent consumptions. The tested and evaluated method was consequently applied in a monitoring of changes in a content of total phenolic compounds (TPC) and total antioxidant activity (TAA) during a process of wine-making. It was found out that total amount of phenolic compounds differs both for individual kind of wines, namely red, white and rose, at each processing stage of the production. The content of phenolic compounds of red and white wine increased while an opposite trend was observed in rose wine. TAA values of analysed wines showed difference between individual kind of wine and indicate the same trend like phenolic profile. Antioxidant activity values relate to changes of phenolic content during production process.
Zobrazit více v PubMed
Alén-Ruiz F, García-Falcón MS, Pérez-Lamela MC, Martínez-Carballo E, Simal-Gándara J. Influence of major polyphenols on antioxidant aktivity in Mencía and Brancellao red wines. Food Chem. 2009;113:53–60. doi: 10.1016/j.foodchem.2008.07.038. DOI
Arnous A, Makris DP, Kefalas P. Correlation of pigment and flavanol content wine antioxidant properties in selected aged regional wines from Greece. J Food Compos Anal. 2002;15:655–665. doi: 10.1006/jfca.2002.1070. DOI
Bai B, He F, Yang L, Chen F, Reeves MJ, Li J. Comparative study of phenolic compounds in Cabernet Sauvignon wines made in traditional and Ganimede fermenters. Food Chem. 2013;141:3984–3992. doi: 10.1016/j.foodchem.2013.06.074. PubMed DOI
Baroni MV, Di Paola Naranjo RD, García-Ferreyra C, Otaiza S, Wunderlin DA. How good antioxidant is the red wine? Comparison of some in vitro and in vivo methods to assess the antioxidant capacity of Argentinean red wines. LWT Food Sci Technol. 2012;47:1–7. doi: 10.1016/j.lwt.2012.01.015. DOI
Benzie IFF, Strain JJ. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal Biochem. 1996;239:70–76. doi: 10.1006/abio.1996.0292. PubMed DOI
Bevin CHJ, Fergusson AJ, Perry WB, Janik LJ, Cozzolino D. Development of a rapid “fingerprinting” system for wine authenticity by Mid-infrared spectroscopy. J Agric Food Chem. 2006;54:9713–9718. doi: 10.1021/jf062265o. PubMed DOI
Blanco-Vega D, Goméz-Alonso S, Hermosín-Gutiérrez I. Identification, content and distribution of anthocyanins and low molecular weight anthocyanin-derived pigments in Spanish commercial red wines. Food Chem. 2014;158:449–458. doi: 10.1016/j.foodchem.2014.02.154. PubMed DOI
Boissier B, Lutin F, Moutounet M, Vernhet A. Particles deposition during the cross-flow microfiltration of red wines—incidence of the hydrodynamic conditions and of the yeast to fines ratio. Chem Eng Process. 2008;47:276–286. doi: 10.1016/j.cep.2007.01.027. DOI
Bravo MN, Silva S, Coelho AV, Vilas Boas L, Bronze MR. Analysis of phenolic compounds in Muscatel wines produced in Portugal. Anal Chim Acta. 2006;563:84–92. doi: 10.1016/j.aca.2005.11.054. DOI
Burns J, Gardner PT, Matthews D, Duthie GG, Lean MEJ, Crozier A. Extraction of phenolic and changes in antioxidant activity of red wines during vinification. J Agric Food Chem. 2001;49:5797–5808. doi: 10.1021/jf010682p. PubMed DOI
Cheynier V, Rigaud J, Souquet JM, Barillére JM, Moutounet M. Must browning in relation to the behaviour of phenolic compounds during oxidation. Am J Enol Vitic. 1990;41:346–349.
Christian GD, Dasgupta PK, Schug KA. Analytical chemistry. Danvers: Wiley; 2014.
Coletta A, Berto S, Crupi P, Cravero MC, Tamborra P, Antonacci D, Daniele PG, Prenesti E. Effect of viticulture practices on concentration of polyphenolic compounds and total antioxidant capacity of Southern Italy red wines. Food Chem. 2014;152:467–474. doi: 10.1016/j.foodchem.2013.11.142. PubMed DOI
Cozzolino D, Kwiatkowski MJ, Parker M, Cynkar WU, Dambergs RG, Gishen M, Herderich MJ. Prediction of phenolic compounds in red wine fermentations by visible and near infrared spectroscopy. Anal Chim Acta. 2004;513:73–80. doi: 10.1016/j.aca.2003.08.066. DOI
Cuadrado MU, Leque de Castro MD, Pérez Juan PM, Gómez-Nieto MA. Comparison and joint use of near infrared spectroscopy and Fourier transform mid infrared spectroscopy for the determination of wine parameters. Talanta. 2005;66:218–224. doi: 10.1016/j.talanta.2004.11.011. PubMed DOI
Darias-Martín JJ, Rodríguez O, Díaz E, Lamuela-Raventós RM. Effect of skin contact on the antioxidant phenolics in white wine. Food Chem. 2000;71:483–487. doi: 10.1016/S0308-8146(00)00177-1. DOI
Di Egidio V, Sinelli N, Giovanelli G, Mooles A, Casiraghi E. NIR and MIR spectroscopy as rapid methods to monitor red wine fermentation. Eur Food Res Technol. 2010;230:947–955. doi: 10.1007/s00217-010-1227-5. DOI
Di Majo D, La Guardia M, Giammanco S, La Neve L, Giammanco M. The antioxidant capacity of red wine in relationship with its polyphenolic constituents. Food Chem. 2008;111:45–49. doi: 10.1016/j.foodchem.2008.03.037. DOI
Edelmann A, Diewok J, Schuster KC, Lendl B. Rapid method for the discrimination of red cultivars based on mid-infrared spectroscopy of phenolic wine extracts. J Agric Food Chem. 2001;49:1139–1145. doi: 10.1021/jf001196p. PubMed DOI
Fernández K, Agosin E. Quantitative analysis of red wine tannins using Fourier-transform mid-infrared spectrometry. J Agric Food Chem. 2007;55:7294–7300. doi: 10.1021/jf071193d. PubMed DOI
Fernández-Pachón MS, Villaño D, García-Parrilla MC, Troncoso AM. Antioxidant activity of wines and relation with their polyphenolic composition. Anal Chim Acta. 2004;513:113–118. doi: 10.1016/j.aca.2004.02.028. DOI
Fernandéz-Pachón MS, Villaño D, Troncoso AM, García-Parrilla MC. Determination of the phenolic composition of sherry and table white wines by liquid chromatography and their relation with antioxidant activity. Anal Chim Acta. 2006;563:101–108. doi: 10.1016/j.aca.2005.09.057. DOI
Fragoso S, Aceña L, Guasch J, Busto O, Mestres M (2011) Application of FT-MIR spectroscopy for fast control of red grape phenolic ripening. J Agric Food Chem 59:2175–2183 PubMed
Frankel EN, Waterhouse AL, Teissedre PL. Principal phenolic phytochemicals in selected California wines and their antioxidant activity in inhibiting oxidation of human low-density lipoproteins. J Agric Food Chem. 1995;43:890–894. doi: 10.1021/jf00052a008. DOI
Friedrich DM, Hulse CA, von Gunten M, Williamson EP, Pederson CG, O’Brien NA (2014) Miniature near-infrared spectrometer for point-of-use chemical analysis. In Soskind YG, Olson C (eds) Photonic instrumentation engineering, SPIE-INT SOC OPTICAL ENGINEERING, Bellingham. doi:10.1117/12.2040669
Ghiselli A, Nardini M, Baldi A, Scaccini C. Antioxidant activity of different phenolic fractions separated from an Italian red wine. J Agric Food Chem. 1998;46(2):361–367. doi: 10.1021/jf970486b. PubMed DOI
Ginjom IR, D’Arcy BR, Caffin NA, Gidley M. Phenolic contents and antioxidant activities of major Australian red wines throughout the winemaking process. J Agric Food Chem. 2010;58:10133–10142. doi: 10.1021/jf100822n. PubMed DOI
Ginjom I, D’Arcy B, Caffin N, Gidley M. Phenolic compound profiles in selected Queensland red wines at all stages of the wine-making process. Food Chem. 2011;125:823–834. doi: 10.1016/j.foodchem.2010.08.062. DOI
Gishen M, Cozzolino D, Dambergs RG. The analysis of grapes, wine and other alcoholic beverages by Infrared spekctroscopy. In: Li-Chan E, Griffiths PR, Chalmers JM, editors. Applications of vibrational spectroscopy in food science. Chichester: John Wiley and Sons, Ltd.; 2010. pp. 539–556.
Goméz-Cordovés C, González-SanJosé ML. Interpretation of colour variables during the aging of red wines: relationship with families of phenolic compounds. J Agric Food Chem. 1995;43(3):557–561. doi: 10.1021/jf00051a001. DOI
Gonzáles-Caballero V, Sánchez MT, Fernández-Novales J, López MI, Pérez-Marín D. On-vine monitoring of grape ripening using near-infrared spectroscopy. Food Anal Methods. 2012;5:1377–1385. doi: 10.1007/s12161-012-9389-3. DOI
Harvey D. Modern analytical chemistry. Boston: Mc Graff Hill; 2000.
Hernanz D, Recamales AF, González-Miret ML, Gómez-Míguez MJ, Vicario IM, Heredia FJ. Phenolic composition of white wines with a prefermentative maceration at experimental and industrial scale. J Food Eng. 2007;80:327–335. doi: 10.1016/j.jfoodeng.2006.06.006. DOI
Jackson RS. Wine science principles and applications. London: Academic; 2008.
Kallithraka S, Salacha MI, Tzourou I. Changes in phenolic composition and antioxidant activity of white wine during bottle storage: Accelerated browning test versus bottle storage. Food Chem. 2009;113:500–505. doi: 10.1016/j.foodchem.2008.07.083. DOI
Katalinić V, Milos M, Modun D, Musíć I, Boban M. Antioxidant effectiveness of selected wines in comparison with (+)-catechin. Food Chem. 2004;86:593–600. doi: 10.1016/j.foodchem.2003.10.007. DOI
Lachman J, Šulc M, Schilla M. Comparison of the total antioxidant status of Bohemian wines during the wine-making process. Food Chem. 2007;103:802–807. doi: 10.1016/j.foodchem.2006.09.024. DOI
Lomolino G, Zocca F, Spettoli P, Zanin G, Lante A. A preliminary study in changes on phenolic content during Bianchetta Trevigiana winemaking. J Food Compos Anal. 2010;23:575–579. doi: 10.1016/j.jfca.2010.04.001. DOI
Makhotkina O, Kilmartin PA. The use of cyclic voltammetry for wine analysis: determination of polyphenols and free sulfur dioxide. Anal Chim Acta. 2010;668:155–165. doi: 10.1016/j.aca.2010.03.064. PubMed DOI
Moreira JL, Santos L. Spectroscopic interferences in Fourier transform infrared wine analysis. Anal Chim Acta. 2004;513:263–268. doi: 10.1016/j.aca.2003.09.029. DOI
Oliveira CM, Ferreira ACS, De Freitas V, Silva AMS. Oxidation mechanisms occurring in wines. Food Res Int. 2011;44:1115–1126. doi: 10.1016/j.foodres.2011.03.050. DOI
Paixão N, Perestrelo R, Marques JC, Câmara JS. Relationship between antioxidant capacity and total phenolic content of red, rosé and white wines. Food Chem. 2007;105:204–214. doi: 10.1016/j.foodchem.2007.04.017. DOI
Patz CD, Blieke A, Ristow R, Dietrich H. Application of FT-MIR spektrometry in wine analysis. Anal Chim Acta. 2004;513:81–89. doi: 10.1016/j.aca.2004.02.051. DOI
Peréz-Marín D, Sánchez MT, Paz P, Soriano A, Guerrero JE, Garrido-Varo A. Non-destructive determination of quality parameters in nectarines during on-tree ripening and post-harvest storage. Postharvest Biol Technol. 2009;52:180–188. doi: 10.1016/j.postharvbio.2008.10.005. DOI
Pérez-Marín D, Paz P, Guerrero JE, Garrido-Varo A, Sánchez MT. Miniature handheld NIR sensor for the on-site non-destructive assessment of post-harvest quality and refrigerated storage behavior in plums. J Food Eng. 2010;99:294–302. doi: 10.1016/j.jfoodeng.2010.03.002. DOI
Plans M, Simó J, Casañas F, Sabaté J, Rodriguez-Saona L. Characterization of common beans (Phaseolus vulgaris L.) by infrared spectroscopy: comparison of MIR, FT-NIR and dispersive NIR using portable and benchtop instruments. Food Res Int. 2013;54:1643–1651. doi: 10.1016/j.foodres.2013.09.003. DOI
Recamales AF, Sayago A, González-Miret ML, Hernanz D. The effect of time and storage conditions on the phenolic composition and colour of white wine. Food Res Int. 2006;39:220–229. doi: 10.1016/j.foodres.2005.07.009. DOI
Regmi U, Palma M, Barroso CG. Direct determination of organic acids in wine and wine-derived products by Fourier transform infrared (FT-IR) spectroscopy and chemometric techniques. Anal Chim Acta. 2012;732:137–144. doi: 10.1016/j.aca.2011.11.009. PubMed DOI
Ribéreaou-Gayon P, Glories Y, Maujean A, Dubourdieu D. Handbook of enology. The chemistry of wine stabilization and treatments. Chichester: John Wiley & Sons, Ltd.; 2006.
Rodríguez-Delgado MA, González-Hernández G, Conde-González JE, Pérez-Trujill JP. Principal component analysis of the polyphenol content in young red wines. Food Chem. 2002;78:523–532. doi: 10.1016/S0308-8146(02)00206-6. DOI
Romera-Fernández M, Berrueta LA, Garmón-Lobato S, Gallo B, Vicente F, Moreda JM. Feasibility study of FT-MIR spectroscopy and PLS-R for the fast determination of anthocyanins in wine. Talanta. 2012;88:303–310. doi: 10.1016/j.talanta.2011.10.045. PubMed DOI
Sánchez MT, De La Haba MJ, Guerrero JE, Garrido-Varo A, Pérez-Marín D. Testing of a local approach for the prediction of quality parameters in intact nectarines using a portable NIRS instrument. Postharvest Biol Technol. 2011;60:130–135. doi: 10.1016/j.postharvbio.2010.12.006. DOI
Sato M, Ramarathnam N, Suzuki Y, Ohkubo T, Takeuchi M, Ochi H. Varietal differences in the phenolic content and superoxide radical scavenging potential of wines from different sources. J Agric Food Chem. 1996;44(1):37–41. doi: 10.1021/jf950190a. DOI
Sauvage S-X, Bach B, Moutounet M, Vernhet A. Proteins in white wines: thermo-sensitivity and differential adsorbtion by bentonite. Food Chem. 2010;118:26–34. doi: 10.1016/j.foodchem.2009.02.080. DOI
Šeruga M, Novak I, Jakobek L. Determination of polyphenols content and antioxidant activity of some red winesby differential pulse voltammetry, HPLC and spectrophotometric methods. Food Chem. 2011;124:1208–1216. doi: 10.1016/j.foodchem.2010.07.047. DOI
Shen F, Ying Y, Li B, Zheng Y, Hu J. Prediction of sugars and acids in Chinese rice wine by mid-infrared spectroscopy. Food Res Int. 2011;44:1521–1527. doi: 10.1016/j.foodres.2011.03.058. DOI
Silva SD, Feliciano RP, Boas LV, Bronze MR. Application of FTIR-ATR to Moscatel dessert wines for prediction of total phenolic and flavonoid contents and antioxidant capacity. Food Chem. 2014;150:489–493. doi: 10.1016/j.foodchem.2013.11.028. PubMed DOI
Singleton VL. Oxygen with phenols and related reactions in musts, wines, and model systems: observations and practical implications. Am J Enol Vitic. 1987;38:69–77.
Soriano A, Pérez-Juan PM, Vicario A, González JM, Pérez-Coello MS. Determination of anthocyanins in red wine using a newly developed method based on Fourier transform infrared spectroscopy. Food Chem. 2007;104:1295–1303. doi: 10.1016/j.foodchem.2006.10.011. DOI
Tarantilis PA, Troianou VE, Pappas CS, Kotseridis YS, Polissiou MG. Differentiation of Greek red wines on the basis of grape variety using attenuated total reflectance Fourier transforms infrared spectroscopy. Food Chem. 2008;111:192–196. doi: 10.1016/j.foodchem.2008.03.020. DOI
Tiwari G, Slaughter DC, Cantwel M. Nondestructive maturity determination in green tomatoes using a handheld visible and near infrared instrument. Postharvest Biol Technol. 2013;86:221–229. doi: 10.1016/j.postharvbio.2013.07.009. DOI
Vernhet A, Moutounet M. Fouling of organic microfiltration membranes by wine constituents: importance, relative impact of wine polysaccharides and polyphenols and incidence of membrane properties. J Membr Sci. 2002;201(1–2):103–122. doi: 10.1016/S0376-7388(01)00723-2. DOI
Versari A, Parpinello GP, Mattioli AU, Galassi S. Determination of grape quality at harvest using Fourier-transform mid-infrared spectroscopy and multivariate analysis. Am J Enol Vitic. 2008;59:317–322.
Versari A, Parpinello GP, Scazzina F, Del Rio D. Prediction of total antioxidant capacity of red wine by Fourier transform infrared spectroscopy. Food Control. 2010;21:786–789. doi: 10.1016/j.foodcont.2009.11.001. DOI
Versari A, Laurie VF, Ricci A, Laghi L, Parpinello GP. Progress in authentication, typification and traceability of grapes and wines by chemometric approaches. Food Res Int. 2014;60:2–18. doi: 10.1016/j.foodres.2014.02.007. DOI
Villaño D, Fernández-Pachón MS, Troncoso AM, García-Parrilla MC. Influence of enological practices on the antioxidant activity of wines. Food Chem. 2006;95:394–404. doi: 10.1016/j.foodchem.2005.01.005. DOI
Waterhouse AI. Current protocols in food analytical chemistry. Chichester: Wiley; 2002. Determination of total phenolics; pp. I1.1.1–I1.1.8.
Wold S, Sjöström M, Eriksson L. PLS-regression: a basic tool of chemometrics. Chemom Intell Lab Syst. 2001;58:109–130. doi: 10.1016/S0169-7439(01)00155-1. DOI
Woraratphoka J, Intarapichet KO, Indrapichate K. Phenolic compounds and antioxidative properties of selected wines from the northeast of Thailand. Food Chem. 2007;104:1485–1490. doi: 10.1016/j.foodchem.2007.02.020. DOI
Zafrilla P, Morillas J, Mulero J, Cayuela JM, Martínez-Cachá A, Pardo F, López Nicolás JM. Changes during storage in conventional and ecological wine: phenolic content and antioxidant activity. J Agric Food Chem. 2003;51:4694–4700. doi: 10.1021/jf021251p. PubMed DOI