A flexible AFT model for misclassified clustered interval-censored data
Language English Country England, Great Britain Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
26444435
DOI
10.1111/biom.12424
Knihovny.cz E-resources
- Keywords
- Bayesian approach, Mismeasured continuous response, Multivariate survival data,
- MeSH
- Bayes Theorem MeSH
- Time Factors MeSH
- Child MeSH
- Humans MeSH
- Longitudinal Studies * MeSH
- Oral Health statistics & numerical data MeSH
- Computer Simulation MeSH
- Cluster Analysis * MeSH
- Models, Statistical * MeSH
- Check Tag
- Child MeSH
- Humans MeSH
- Male MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Motivated by a longitudinal oral health study, we propose a flexible modeling approach for clustered time-to-event data, when the response of interest can only be determined to lie in an interval obtained from a sequence of examination times (interval-censored data) and on top of that, the determination of the occurrence of the event is subject to misclassification. The clustered time-to-event data are modeled using an accelerated failure time model with random effects and by assuming a penalized Gaussian mixture model for the random effects terms to avoid restrictive distributional assumptions concerning the event times. A general misclassification model is discussed in detail, considering the possibility that different examiners were involved in the assessment of the occurrence of the events for a given subject across time. A Bayesian implementation of the proposed model is described in a detailed manner. We additionally provide empirical evidence showing that the model can be used to estimate the underlying time-to-event distribution and the misclassification parameters without any external information about the latter parameters. We also provide results of a simulation study to evaluate the effect of neglecting the presence of misclassification in the analysis of clustered time-to-event data.
References provided by Crossref.org