Unraveling the performance of dispersion-corrected functionals for the accurate description of weakly bound natural polyphenols
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
26499498
DOI
10.1007/s00894-015-2838-3
PII: 10.1007/s00894-015-2838-3
Knihovny.cz E-zdroje
- Klíčová slova
- DFT-D, Natural polyphenols, Non-covalent interactions,
- MeSH
- chemické databáze MeSH
- molekulární modely MeSH
- molekulární struktura MeSH
- polyfenoly chemie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- polyfenoly MeSH
Long-range non-covalent interactions play a key role in the chemistry of natural polyphenols. We have previously proposed a description of supramolecular polyphenol complexes by the B3P86 density functional coupled with some corrections for dispersion. We couple here the B3P86 functional with the D3 correction for dispersion, assessing systematically the accuracy of the new B3P86-D3 model using for that the well-known S66, HB23, NCCE31, and S12L datasets for non-covalent interactions. Furthermore, the association energies of these complexes were carefully compared to those obtained by other dispersion-corrected functionals, such as B(3)LYP-D3, BP86-D3 or B3P86-NL. Finally, this set of models were also applied to a database composed of seven non-covalent polyphenol complexes of the most interest. Graphical abstract Weakly bound natural polyphenolsᅟ.
Departamento de Química Física Universidad de Alicante Apartado de Correos 99 E 03080 Alicante Spain
INSERM UMR 850 Univ Limoges Faculté de Pharmacie 2 rue du Dr Marcland F 87025 Limoges France
Zobrazit více v PubMed
J Chem Theory Comput. 2011 Apr 12;7(4):1073-81 PubMed
J Comput Chem. 2007 Jan 30;28(2):555-69 PubMed
J Chem Theory Comput. 2005 May;1(3):415-32 PubMed
J Photochem Photobiol B. 2012 Jun 4;111:17-26 PubMed
J Chem Theory Comput. 2011 Dec 13;7(12):3866-71 PubMed
J Phys Chem A. 2005 Jun 30;109(25):5656-67 PubMed
J Comput Chem. 2011 May;32(7):1456-65 PubMed
Philos Trans A Math Phys Eng Sci. 2014 Feb 10;372(2011):20120476 PubMed
J Phys Chem B. 2012 Dec 6;116(48):14089-99 PubMed
Drugs. 2001;61(14):2035-63 PubMed
Chemistry. 2008;14(36):11376-84 PubMed
J Chem Phys. 2005 Jul 8;123(2):24101 PubMed
J Comput Chem. 2006 Nov 30;27(15):1787-99 PubMed
J Comput Chem. 2004 Sep;25(12):1463-73 PubMed
Phys Chem Chem Phys. 2010 Jul 21;12(27):7662-70 PubMed
J Comput Aided Mol Des. 2013 Nov;27(11):951-64 PubMed
J Phys Chem A. 2006 Feb 16;110(6):2235-45 PubMed
Spectrochim Acta A Mol Biomol Spectrosc. 2005 Nov;62(1-3):673-80 PubMed
Phys Rev Lett. 2004 Jun 18;92(24):246401 PubMed
J Chem Theory Comput. 2013 Mar 12;9(3):1580-91 PubMed
J Chem Phys. 2010 Apr 21;132(15):154104 PubMed
J Phys Chem A. 2012 Apr 26;116(16):4159-69 PubMed
J Chem Phys. 2006 May 7;124(17):174104 PubMed
J Comput Chem. 2003 Nov 15;24(14):1740-7 PubMed
Phys Chem Chem Phys. 2013 Aug 21;15(31):12821-8 PubMed
J Chem Theory Comput. 2011 Aug 9;7(8):2427-2438 PubMed
Nature. 2011 Jun 22;474(7352):461-6 PubMed
Am J Clin Nutr. 2004 May;79(5):727-47 PubMed
J Phys Chem A. 2013 Mar 14;117(10):2082-92 PubMed
J Chem Theory Comput. 2012 Jun 12;8(6):2034-43 PubMed
Phys Chem Chem Phys. 2006 May 7;8(17):1985-93 PubMed
J Chem Theory Comput. 2010 Aug 10;6(8):2365-76 PubMed
J Agric Food Chem. 2014 Jul 23;62(29):6995-7001 PubMed
J Chem Phys. 2010 Dec 28;133(24):244103 PubMed
J Nat Prod. 2013 Apr 26;76(4):538-46 PubMed
J Phys Chem A. 2013 Apr 11;117(14):3118-32 PubMed
Chemistry. 2012 Aug 6;18(32):9955-64 PubMed
Eur J Epidemiol. 2000 Apr;16(4):357-63 PubMed
Lancet. 1993 Oct 23;342(8878):1007-11 PubMed
J Chem Phys. 2005 Apr 15;122(15):154104 PubMed
Food Chem. 2013 Dec 15;141(4):4349-57 PubMed