DFT-D
Dotaz
Zobrazit nápovědu
In this work, we investigate the mode of binding of several steroid hormones, namely aldosterone, deoxycorticosterone, and progesterone to the wild-type and S810L mutated mineralocorticoid (MR) receptor using the newly formulated density functional theory with an empirical dispersion term (DFT-D) molecular electronic structure method. It is found that the MR agonists, aldosterone and deoxycorticosterone, form tight hydrogen bonds with residues Thr945 and Asn770, which leads to the formation of hydrogen bond networks near the steroid D-ring, allowing for activation of this transcription factor. Progesterone, an MR antagonist, fails to form the necessary hydrogen bonds near the steroid D-ring. Progesterone is known to be an agonist of the mutated S810L MR receptor. Our studies indicate that this is possible because of a strong hydrogen bond between progesterone and Thr945 and a relatively strong hydrophobic interaction between progesterone and Asn770.
- MeSH
- financování organizované MeSH
- hormony chemie metabolismus MeSH
- leucin genetika metabolismus MeSH
- ligandy MeSH
- molekulární modely MeSH
- mutace genetika MeSH
- receptory mineralokortikoidů genetika chemie metabolismus MeSH
- serin genetika metabolismus MeSH
- steroidy chemie MeSH
- terciární struktura proteinů MeSH
- vodíková vazba MeSH
Resolution of identity standard density functional theory augmented with a damped empirical dispersion term (RI-DFT-D) calculations have been carried out on a set of lowest energy minima of tryptophyl-glycine (Trp-Gly) and tryptophyl-glycyl-glycine (Trp-Gly-Gly) peptides. RI-DFT-D (TPSS/TZVP) results are in excellent agreement with benchmark data based on the CCSD(T) method. Experimental spectra could be assigned according to the calculated IR frequencies. Central processing unit (CPU) time requirements are only slightly higher than those needed for the DFT calculations. Consequently, RI-DFT-D theory seems to be a promising methodology for studying oligopeptides with accuracy comparable to ab initio quantum chemical calculations.
In this work we investigate the performance of the DFT method, augmented with an empirical dispersion function (DFT-D), paired with the PCM implicit solvation model, for the computation of noncovalent interaction energies of biologically-relevant, solvated model complexes. It is found that this method describes intermolecular interactions within water and ether (protein-like) environments with roughly the same accuracy as in the gas phase. Another important finding is that, when environmental effects are taken into account, the empirical dispersion term associated with the DFT-D method need be modified very little (or not at all), in order to obtain the optimum, most well balanced, performance.
- MeSH
- algoritmy MeSH
- biologické modely MeSH
- chemické modely MeSH
- DNA chemie MeSH
- hydrofobní a hydrofilní interakce MeSH
- kvantová teorie MeSH
- makromolekulární látky chemie MeSH
- povrchové vlastnosti MeSH
- přenos energie MeSH
- proteiny chemie MeSH
- RNA chemie MeSH
- rozpustnost MeSH
- roztoky MeSH
- termodynamika MeSH
- vodíková vazba MeSH
A detailed quantum chemical study on five peptides (WG, WGG, FGG, GGF and GFA) containing the residues phenylalanyl (F), glycyl (G), tryptophyl (W) and alanyl (A) -- where F and W are of aromatic character -- is presented. When investigating isolated small peptides, the dispersion interaction is the dominant attractive force in the peptide backbone-aromatic side chain intramolecular interaction. Consequently, an accurate theoretical study of these systems requires the use of a methodology covering properly the London dispersion forces. For this reason we have assessed the performance of the MP2, SCS-MP2, MP3, TPSS-D, PBE-D, M06-2X, BH&H, TPSS, B3LYP, tight-binding DFT-D methods and ff99 empirical force field compared to CCSD(T)/complete basis set (CBS) limit benchmark data. All the DFT techniques with a '-D' symbol have been augmented by empirical dispersion energy while the M06-2X functional was parameterized to cover the London dispersion energy. For the systems here studied we have concluded that the use of the ff99 force field is not recommended mainly due to problems concerning the assignment of reliable atomic charges. Tight-binding DFT-D is efficient as a screening tool providing reliable geometries. Among the DFT functionals, the M06-2X and TPSS-D show the best performance what is explained by the fact that both procedures cover the dispersion energy. The B3LYP and TPSS functionals-not covering this energy-fail systematically. Both, electronic energies and geometries obtained by means of the wave-function theory methods compare satisfactorily with the CCSD(T)/CBS benchmark data.
This work aims to find the most suitable method that is practically applicable for the calculation of 31P NMR chemical shifts of Pt(II) complexes. The influence of various all-electron and ECP basis sets, DFT functionals, and solvent effects on the optimized geometry was tested. A variety of combinations of DFT functionals BP86, B3LYP, PBE0, TPSSh, CAM-B3LYP, and ωB97XD with all-electron basis sets 6-31G, 6-31G(d), 6-31G(d,p), 6-311G(d,p), and TZVP and ECP basis sets SDD, LanL2DZ, and CEP-31G were used. Chemical shielding constants were then calculated using BP86, PBE0, and B3LYP functionals in combination with the TZ2P basis. The magnitude of spin-orbit interactions was also evaluated.
- Publikační typ
- časopisecké články MeSH
The unwinding Gibbs energy (or duplex dissociation energy) is an important measure of the thermodynamic stability of DNA oligomers. This value can be measured experimentally or predicted by empirical models parametrised on experimental data. Our previously developed model based on accurate DFT-D calculations of interaction energies between nucleic acid bases corrected for solvation contribution. This work was successfully extended to cover variable lengths of oligomers. This model was further applied to oligomers containing inosine, an unnatural base. The results, however, are not satisfactory and it is clear that the model does not take into account all variables contributing to DNA stability. Inclusion of the backbone deformation energy did not improve the model. We also compared models based on DFT-D and forcefield calculations. Forcefield performs well in this application, because the systematic error in interaction energies is cancelled in the fitting procedure.
The free-energy surface (FES) of glycyl-phenylalanyl-alanine (GFA) tripeptide was explored by molecular dynamics (MD) simulations in combination with high-level correlated ab initio quantum chemical calculations and metadynamics. Both the MD and metadynamics employed the tight-binding DFT-D method instead of the AMBER force field, which yielded inaccurate results. We classified the minima localised in the FESs as follows: a) the backbone-conformational arrangement; and b) the existence of a COOH...OC intramolecular H-bond (families CO(2)H(free) and CO(2)H(bonded)). Comparison with experimental results showed that the most stable minima in the FES correspond to the experimentally observed structures. Remarkably, however, we did not observe experimentally the CO(2)H(bonded) family (also predicted by metadynamics), although its stability is comparable to that of the CO(2)H(free) structures. This fact was explained by the former's short excited-state lifetime. We also carried out ab initio calculations using DFT-D and the M06-2X functional. The importance of the dispersion energy in stabilising peptide conformers is well reflected by our pioneer analysis using the DFT-SAPT method to explore the nature of the backbone/side-chain interactions.
In this work, the 3-D structure of the well-known opioid drug heroin in a solution was investigated. The goal was to provide a complete and detailed description of the stable conformers with their relative abundances. This knowledge is very important from the pharmaceutical and forensic point of view as it could help significantly with deeper understanding of heroin's metabolism and the development of antagonist medicines for the case of an overdose. As heroin is a chiral compound with five stereogenic centres, the methods of chiroptical spectroscopy supplemented by density functional theory (DFT) calculations were applied to study its conformations in chloroform solution. The selected chiroptical methods, namely, electronic circular dichroism (ECD) and vibrational circular dichroism (VCD), are inherently sensitive to the 3-D structure of small- to medium-sized chiral organic molecules. A thorough conformational analysis revealed four stable conformers of heroin in chloroform solution, where the conductor-like polarizable continuum model of the solvent was used for all the calculations. The simulated ultraviolet (UV), infrared (IR), ECD, and VCD spectra were compared with the experimental ones and very good agreement was found, which enabled a detailed structure description and interpretation of the spectra. Chiroptical spectroscopy in combination with DFT calculations proved to be a very sensitive tool for the analysis of the 3-D structure of heroin in a solution in contrast with conventional spectroscopic methods. Especially, the application of VCD seems to be a promising approach for monitoring structural changes, for instance, those caused by solvents or interactions with other agents.
Interaction of dibenzo-18-crown-6 (DBC) with H 3O (+) (HP) in nitrobenzene- d 5 and dichloromethane- d 2 was studied by using (1)H and (13)C NMR spectra and relaxations, FTIR spectra, and quantum chemical DFT calculations. NMR shows that the DBC*HP complex is in a dynamic equilibrium with the reactants, the equilibrium constant K being 0.66 x 10 (3), 1.16 x 10 (4), and 1.03 x 10 (4) L x mol (-1) in CD 2Cl 2, nitrobenzene, and acetonitrile, respectively. The complex appears to have a C 2 v symmetry in NMR, but FTIR combined with DFT normal mode calculations suggest that such high symmetry is only apparent and due to exchange averaging of the structure. FTIR spectra as well as energy-optimized DFT calculations show that the most stable state of the complex in solution is that with three linear hydrogen bonds of HP with one CH 2-O-CH 2 and two Ar-O-Ar oxygen atoms. The structure is similar to that found in solid state but adopts a somewhat different conformation in solution. The dynamics of exchange between bound and free DBC was studied by NMR transverse relaxation. It was found to be too fast to give reproducible results when measured with the ordinary CPMG sequence or its variant DIFTRE removing residual static dipolar interaction, but it could be established by rotating-frame measurements with high intensity of the spin-lock field. The correlation time of exchange was found to be 5.6 x 10 (-6) and 3.8 x 10 (-6) s in dichloromethane and nitrobenzene, respectively. Such fast exchange can be explained by cooperative assistance of present water molecules.
- MeSH
- chemické modely MeSH
- crown ethery MeSH
- izotopy uhlíku MeSH
- kvantová teorie MeSH
- magnetická rezonanční spektroskopie metody normy MeSH
- molekulární struktura MeSH
- oniové sloučeniny MeSH
- počítačová simulace MeSH
- protony MeSH
- referenční standardy MeSH
- spektroskopie infračervená s Fourierovou transformací metody MeSH
- vodíková vazba MeSH
Aromatic ring-peptide bond interactions (modeled as benzene and formamide, N-methylformamide and N-methylacetamide) are studied by means of advanced computational chemistry methods: second-order Moller-Plesset (MP2), coupled-cluster single and double excitation model [CCSD(T)], and density functional theory with dispersion (DFT-D). The geometrical preferences of these interactions as well as their interaction energy content, in both parallel and T-shaped arrangements, are investigated. The stabilization energy reaches a value of over 5 kcal/mol for the N-methylformamide-benzene complex at the CCSD(T)/complete basis set (CBS) level. Decomposition of interaction energy by the DFT-symmetry-adapted perturbation treatment (SAPT) technique shows that the parallel and T-shaped arrangements, although similar in their total interaction energies, differ significantly in the proportion of electrostatic and dispersion terms.