Cross-correlated relaxation measurements under adiabatic sweeps: determination of local order in proteins
Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
279519
European Research Council - International
P 26849
Austrian Science Fund FWF - Austria
PubMed
26507334
PubMed Central
PMC4662729
DOI
10.1007/s10858-015-9994-8
PII: 10.1007/s10858-015-9994-8
Knihovny.cz E-zdroje
- Klíčová slova
- Adiabatic sweep, Cross-correlated cross relaxation, NMR, Protein dynamics,
- MeSH
- interakční proteinové domény a motivy MeSH
- lidé MeSH
- nukleární magnetická rezonance biomolekulární metody MeSH
- protein vázající CREB chemie MeSH
- ubikvitin chemie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- CREBBP protein, human MeSH Prohlížeč
- protein vázající CREB MeSH
- ubikvitin MeSH
Adiabatically swept pulses were originally designed for the purpose of broadband spin inversion. Later, unexpected advantages of their utilization were also found in other applications, such as refocusing to excite spin echoes, studies of chemical exchange or fragment-based drug design. Here, we present new experiments to characterize fast (ps-ns) protein dynamics, which benefit from little-known properties of adiabatic pulses. We developed a strategy for measuring cross-correlated cross-relaxation (CCCR) rates during adiabatic pulses. This experiment provides a linear combination of longitudinal and transverse CCCR rates, which is offset-independent across a typical amide (15)N spectrum. The pulse sequence can be recast to provide accurate transverse CCCR rates weighted by the populations of exchanging states. Sensitivity can be improved in systems in slow exchange. Finally, the experiments can be easily modified to yield residue-specific correlation times. The average correlation time of motions can be determined with a single experiment while at least two different experiments had to be recorded until now.
Central European Institute of Technology Masaryk University Kamenice 5 625 00 Brno Czech Republic
Sorbonne Universités UPMC Univ Paris 06 LBM 4 place Jussieu 75005 Paris France
Zobrazit více v PubMed
Abragam A. The principles of nuclear magnetism. Oxford: Clarendon Press; 1961.
Auer R, Kloiber K, Vavrinska A, Geist L, Coudevylle N, Konrat R. Pharmacophore mapping via cross-relaxation during adiabatic fast passage. J Am Chem Soc. 2010;132:1480–1481. doi: 10.1021/ja910098s. PubMed DOI
Auer R, Tollinger M, Kuprov I, Konrat R, Kloiber K. Mathematical treatment of adiabatic fast passage pulses for the computation of nuclear spin relaxation rates in proteins with conformational exchange. J Biomol NMR. 2011;51:35–47. doi: 10.1007/s10858-011-9539-8. PubMed DOI PMC
Böhlen JM, Bodenhausen G. Experimental aspects of chirp NMR spectroscopy. J Magn Reson Ser A. 1993;102:293–301. doi: 10.1006/jmra.1993.1107. DOI
Böhlen JM, Burghardt I, Rey M, Bodenhausen G. Frequency modulated “Chirp” pulses for broadband inversion recovery in magnetic resonance. J Magn Reson. 1990;90:183–191.
Croke RL, Sallum CO, Watson E, Watt ED, Alexandrescu AT. Hydrogen exchange of monomeric PubMed DOI PMC
Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax A. NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR. 1995;6:277–293. doi: 10.1007/BF00197809. PubMed DOI
Eaton JW, Bateman D, Hauberg S. GNU Octave version 3.0.1 manual: a high-level interactive language for numerical computations. Seattle: CreateSpace Independent Publishing Platform; 2009.
Farrow NA, Zhang O, Szabo A, Torchia DA, Kay LE. Spectral density function mapping using PubMed DOI
Ferrage F, Cowburn D, Ghose R. Accurate sampling of high frequency motions in proteins by steady-state PubMed DOI PMC
Ghose R, Eykyn TR, Bodenhausen G. Average Liouvillian theory revisited: cross-correlated relaxation between chemical shift anisotropy and dipolar couplings in the rotating frame in nuclear magnetic resonance. Mol Phys. 1999;96:1281–1288. doi: 10.1080/00268979909483072. DOI
Ghose R. Average Liouvillian theory in nuclear magnetic resonance - Principles, properties, and applications. Concepts Magn Reson. 2000;12:152–172. doi: 10.1002/(SICI)1099-0534(2000)12:3<152::AID-CMR4>3.0.CO;2-P. DOI
Goddard TD, Kneller DG (2006) Sparky. UCSF, San Francisco
Halle B. The physical basis of model-free analysis of NMR relaxation data from proteins and complex fluids. J Chem Phys. 2009;131(224):507. PubMed
Halle B, Andersson T, Forsén S, Lindman B. Protein hydration from water oxygen-17 magnetic relaxation. J Am Chem Soc. 1981;103:500–508. doi: 10.1021/ja00393a004. DOI
Hogben HJ, Krzystyniak M, Charnock GTP, Hore PJ, Kuprov I. Spinach A software library for simulation of spin dynamics in large spin systems. J Magn Reson. 2011;208:179–194. doi: 10.1016/j.jmr.2010.11.008. PubMed DOI
Ishima R, Nagayama K. Protein backbone dynamics revealed by quasi spectral density function analysis of amide N-15 nuclei. Biochemistry. 1995;34:3162–3171. doi: 10.1021/bi00010a005. PubMed DOI
Ishima R, Nagayama K. Quasi-spectral-density function analysis for nitrogen-15 nuclei in proteins. J Magn Reson Ser B. 1995;108:73–76. doi: 10.1006/jmrb.1995.1104. DOI
Kadeřávek P, Zapletal V, Rabatinová A, Krásný L, Sklenář V, Žídek L. Spectral density mapping protocols for analysis of molecular motions in disordered proteins. J Biomol NMR. 2014;58:193–207. doi: 10.1007/s10858-014-9816-4. PubMed DOI
Konrat R, Tollinger M. Heteronuclear relaxation in time-dependent spin systems: PubMed DOI
Korzhnev DM, Billeter M, Arseniev AS, Orekhov VY. NMR studies of Brownian tumbling and internal motions in proteins. Prog Nucl Magn Reson Spectrosc. 2001;38:197–266. doi: 10.1016/S0079-6565(00)00028-5. DOI
Kroenke CD, Loria JP, Lee LK, Rance M, Palmer AG. Longitudinal and transverse DOI
Kupče E, Freeman R. Adiabatic pulses for wide-band inversion and broad-band decoupling. J Magn Reson Ser A. 1995;115:273–276. doi: 10.1006/jmra.1995.1179. DOI
Lakomek NA, Ying J, Bax A. Measurement of PubMed DOI PMC
Levitt MH, Bari LD. Steady state in magnetic-resonance pulse experiments. Phys Rev Lett. 1992;69:3124–3127. doi: 10.1103/PhysRevLett.69.3124. PubMed DOI
Lipari G, Szabo A. Model-free approach to the interpretation of nuclear magnetic resonance relaxation in macromolecules 1. Theory and range of validity. J Am Chem Soc. 1982;104:4546–4559. doi: 10.1021/ja00381a009. DOI
Lipari G, Szabo A. Model-free approach to the interpretation of nuclear magnetic resonance relaxation in macromolecules 2. Analysis of experimental results. J Am Chem Soc. 1982;104:4559–4570. doi: 10.1021/ja00381a010. DOI
Mangia S, Traaseth NJ, Veglia G, Garwood M, Michaeli S. Probing slow protein dynamics by adiabatic PubMed DOI PMC
MATLAB and statistics toolbox release R2014a, The MathWorks, Inc, Natick, Massachusetts, United States
Mulder FAA, Mittermaier A, Hon B, Dahlquist FW. Studying excited states of proteins by NMR spectroscopy. Nat Struct Biol. 2001;8:932–935. doi: 10.1038/nsb1101-932. PubMed DOI
Palmer AG, III, Kroenke CD, Loria JP. Nuclear magnetic resonance methods for quantifying microsecond-to-millisecond motions in biological macromolecules. Methods Enzymol. 2001;339:204–238. doi: 10.1016/S0076-6879(01)39315-1. PubMed DOI
Pelupessy P, Espallargas GM, Bodenhausen G. Symmetrical reconversion: measuring cross-correlation rates with enhanced accuracy. J Magn Res. 2003;161:258–264. doi: 10.1016/S1090-7807(02)00190-8. PubMed DOI
Pelupessy P, Ferrage F, Bodenhausen G. Accurate measurement of longitudinal cross-relaxation rates in nuclear magnetic resonance. J Chem Phys. 2007;126:134508. doi: 10.1063/1.2715583. PubMed DOI
Peng JW, Wagner G. Mapping of spectral density-functions using heteronuclear NMR relaxation measurements. J Magn Reson. 1992;98:308–332.
Peng JW, Wagner G. Mapping of the spectral densities of N–H bond motions in Eglin c using heteronuclear relaxation experiments. Biochemistry. 1992;31:8571–8586. doi: 10.1021/bi00151a027. PubMed DOI
Redfield AG. The theory of relaxation processes. Adv Magn Reson. 1965;1:1–32. doi: 10.1016/B978-1-4832-3114-3.50007-6. DOI
Schanda P, Brutscher B, Konrat R, Tollinger M. Folding of the KIX domain: characterization of the equilibrium analog of a folding intermediate using PubMed DOI
Tollinger M, Kloiber K, Agoston B, Dorigoni C, Lichtenecker R, Schmid W, Konrat R. An isolated helix persists in a sparsely populated form of KIX under native conditions. Biochemistry. 2006;45:8885–8893. doi: 10.1021/bi0607305. PubMed DOI
Valentine ER, Ferrage F, Massi F, Cowburn D, Palmer AG., III Joint composite-rotation adiabatic-sweep isotope filtration. J Biomol NMR. 2007;38:11–22. doi: 10.1007/s10858-006-9131-9. PubMed DOI PMC
Wangsness R, Bloch F. The dynamical theory of nuclear induction. Phys Rev Lett. 1953;89:728–739.
Wolfram Research Inc. (2012) Mathematica