A CuAAC-Hydrazone-CuAAC Trifunctional Scaffold for the Solid-Phase Synthesis of Trimodal Compounds: Possibilities and Limitations

. 2015 Oct 23 ; 20 (10) : 19310-29. [epub] 20151023

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid26512633

Grantová podpora
MR/K000179/1 Medical Research Council - United Kingdom

We present a trifunctional scaffold designed for the solid-phase synthesis of trimodal compounds. This scaffold holds two alkyne arms in a free and TIPS-protected form for consecutive CuAAC (copper(I)-catalyzed azide-alkyne cycloaddition), one Fmoc-protected hydrazide arm for reaction with aldehydes, and one carboxylic acid arm with CF₂ groups for attachment to the resin and (19)F-NMR quantification. This scaffold was attached to a resin and derivatized with model azides and aliphatic, electron-rich or electron-poor aromatic aldehydes. We identified several limitations of the scaffold caused by the instability of hydrazones in acidic conditions, in the presence of copper during CuAAC, and when copper accumulated in the resin. We successfully overcame these drawbacks by optimizing synthetic conditions for the derivatization of the scaffold with aromatic aldehydes. Overall, the new trifunctional scaffold combines CuAAC and hydrazone chemistries, offering a broader chemical space for the development of bioactive compounds.

Zobrazit více v PubMed

Beal D.M., Jones L.H. Molecular scaffolds using multiple orthogonal conjugations: Applications in chemical biology and drug discovery. Angew. Chem. Int. Ed. 2012;51:6320–6326. doi: 10.1002/anie.201200002. PubMed DOI

Iha R.K., Wooley K.L., Nyström A.M., Burke D.J., Kade M.J., Hawker C.J. Applications of orthogonal “click” chemistries in the synthesis of functional soft materials. Chem. Rev. 2009;109:5620–5686. doi: 10.1021/cr900138t. PubMed DOI PMC

Chamorro C., Kruijtzer J.A., Farsaraki M., Balzarini J., Liskamp R.M. A general approach for the non-stop solid phase synthesis of tac-scaffolded loops towards protein mimics containing discontinuous epitopes. Chem. Commun. 2009;7:821–823. doi: 10.1039/B817357E. PubMed DOI

Vaněk V., Pícha J., Fabre B., Buděšínský M., Lepšík M., Jiráček J. The development of a versatile trifunctional scaffold for biological applications. Eur. J. Org. Chem. 2015;17:3689–3701. doi: 10.1002/ejoc.201500255. DOI

Opatz T., Liskamp R.M.J. Synthesis and screening of libraries of synthetic tripodal receptor molecules with three different amino acid or peptide arms: Identification of iron binders. J. Comb. Chem. 2002;4:275–284. doi: 10.1021/cc020009s. PubMed DOI

Valverde I.E., Delmas A.F., Aucagne V. Click à la carte: Robust semi-orthogonal alkyne protecting groups for multiple successive azide/alkyne cycloadditions. Tetrahedron. 2009;65:7597–7602. doi: 10.1016/j.tet.2009.06.093. DOI

Nowick J.S., Chung D.M., Maitra K., Maitra S., Stigers K.D., Sun Y. An unnatural amino acid that mimics a tripeptide β-strand and forms β-sheetlike hydrogen-bonded dimers. J. Am. Chem. Soc. 2000;122:7654–7661. doi: 10.1021/ja001142w. DOI

Greene T.W., Wuts P.G. Protective Groups in Organic Synthesis. 3rd ed. John Wiley & Sons; Hoboken, NJ, USA: 1998.

García-Martín F., Quintanar-Audelo M., García-Ramos Y., Cruz L.J., Gravel C., Furic R., Côté S., Tulla-Puche J., Albericio F. Chemmatrix, a poly (ethylene glycol)-based support for the solid-phase synthesis of complex peptides. J. Comb. Chem. 2006;8:213–220. doi: 10.1021/cc0600019. PubMed DOI

García-Martín Y., Paradís-Bas M., Tulla-Puche J., Albericio F. Chemmatrix® for complex peptides and combinatorial chemistry. J. Pept. Sci. 2010;16:675–678. doi: 10.1002/psc.1282. PubMed DOI

Ramage R., Irving S., McInnes C. Design of a versatile linker for solid phase peptide synthesis: Synthesis of C-terminal primary/seconary amides and hydrazides. Tetrahedron Lett. 1993;34:6599–6602. doi: 10.1016/0040-4039(93)88115-Y. DOI

Ueki M., Amemiya M. Removal of 9-fluorenylmethyloxycarbonyl (fmoc) group with tetrabutylammonium fluoride. Tetrahedron Lett. 1987;28:6617–6620. doi: 10.1016/S0040-4039(00)96928-4. DOI

Isaad A.L., Papini A.M., Chorev M., Rovero P. Side chain-to-side chain cyclization by click reaction. J. Pept. Sci. 2009;15:451–454. doi: 10.1002/psc.1141. PubMed DOI

Tornoe C.W., Christensen C., Meldal M. Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper(I)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. J. Org. Chem. 2002;67:3057–3064. doi: 10.1021/jo011148j. PubMed DOI

Rostovtsev V.V., Green L.G., Fokin V.V., Sharpless K.B. A stepwise huisgen cycloaddition process: Copper(I)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angew. Chem. Int. Ed. 2002;41:2596–2599. doi: 10.1002/1521-3773(20020715)41:14<2596::AID-ANIE2596>3.0.CO;2-4. PubMed DOI

Montoya L.A., Pluth M.D. Selective turn-on fluorescent probes for imaging hydrogen sulfide in living cells. Chem. Commun. 2012;48:4767–4769. doi: 10.1039/c2cc30730h. PubMed DOI PMC

Liu C.R., Pan J., Li S., Zhao Y., Wu L.Y., Berkman C.E., Whorton A.R., Xian M. Capture and visualization of hydrogen sulfide by a fluorescent probe. Angew. Chem. Int. Ed. 2011;50:10327–10329. doi: 10.1002/anie.201104305. PubMed DOI PMC

Rao H.S.P., Siva P. Facile reduction of azides with sodium-borohydride copper(II) sulfate system. Synth. Commun. 1994;24:549–555.

Tian M.-Z., Hu M.-M., Fan J.-L., Peng X.-J., Wang J.-Y., Sun S.-G., Zhang R. Rhodamine-based “turn-on” fluorescent probe for Cu(II) and its fluorescence imaging in living cells. Bioorg. Med. Chem. Lett. 2013;23:2916–2919. doi: 10.1016/j.bmcl.2013.03.052. PubMed DOI

Huang C.-H., Stone A.T. Transformation of the plant growth regulator daminozide (alar) and structurally related compounds with cuii ions: Oxidation versus hydrolysis. Environ. Sci. Technol. 2003;37:1829–1837. doi: 10.1021/es026244w. PubMed DOI

Kumar M., Kumar N., Bhalla V., Sharma P.R., Kaur T. Highly selective fluorescence turn-on chemodosimeter based on rhodamine for nanomolar detection of copper ions. Org. Lett. 2012;14:406–409. doi: 10.1021/ol203186b. PubMed DOI

Fu F.L., Wang Q. Removal of heavy metal ions from wastewaters: A review. J. Environ. Manage. 2011;92:407–418. doi: 10.1016/j.jenvman.2010.11.011. PubMed DOI

Bradley D., Williams G., Lawton M. Drying of organic solvents: Quantitative evaluation of the efficiency of several desiccants. J. Org. Chem. 2010;75:8351–8354. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...