A combined MR and CT study for precise quantitative analysis of the avian brain
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
26515262
PubMed Central
PMC4626839
DOI
10.1038/srep16002
PII: srep16002
Knihovny.cz E-zdroje
- MeSH
- Galliformes MeSH
- kontrastní látky chemie MeSH
- magnetická rezonanční tomografie * MeSH
- mozek diagnostické zobrazování MeSH
- počítačová rentgenová tomografie * MeSH
- počítačové zpracování obrazu MeSH
- sloučeniny wolframu chemie MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- kontrastní látky MeSH
- sloučeniny wolframu MeSH
- tungstate MeSH Prohlížeč
Brain size is widely used as a measure of behavioural complexity and sensory-locomotive capacity in avians but has largely relied upon laborious dissections, endoneurocranial tissue displacement, and physical measurement to derive comparative volumes. As an alternative, we present a new precise calculation method based upon coupled magnetic resonance (MR) imaging and computed tomography (CT). Our approach utilizes a novel interactive Fakir probe cross-referenced with an automated CT protocol to efficiently generate total volumes and surface areas of the brain tissue and endoneurocranial space, as well as the discrete cephalic compartments. We also complemented our procedures by using sodium polytungstate (SPT) as a contrast agent. This greatly enhanced CT applications but did not degrade MR quality and is therefore practical for virtual brain tissue reconstructions employing multiple imaging modalities. To demonstrate our technique, we visualized sex-based brain size differentiation in a sample set of Ring-necked pheasants (Phasianus colchicus). This revealed no significant variance in relative volume or surface areas of the primary brain regions. Rather, a trend towards isometric enlargement of the total brain and endoneurocranial space was evidenced in males versus females, thus advocating a non-differential sexually dimorphic pattern of brain size increase amongst these facultatively flying birds.
Zobrazit více v PubMed
Healy S. D. & Rowe C. A critique of comparative studies of brain size. Proc. R. Soc. B 274, 453–464 (2007). PubMed PMC
Iwaniuk A. N. & Nelson J. E. Can endocranial volume be used as an estimate of brain size in birds? Can. J. Zool. 80, 16–23 (2002).
Iwaniuk A. N. & Nelson J. E. Developmental differences are correlated with relative brain size in birds: a comparative analysis. Can. J. Zool. 81, 1913–1928 (2003).
Marino L., Sol D., Toren K. & Lefebvre L. Does diving limit brain size in cetaceans? Mar. Mammal. Sci. 22, 413–425 (2006).
Sutton M. D. Tomographic techniques for the study of exceptionally preserved fossils. Proc. R. Soc. B 275, 1587–1593 (2008). PubMed PMC
Corfield J. R., Wild J. M., Cowan B. R., Parsons S. & Kubke M. F. MRI of postmortem specimens of endangered species for comparative brain anatomy. Nature Protoc. 3, 597–605 (2008). PubMed
Zelenitsky D. K., Therrien F., Ridgely R. C., McGee A. R. & Witmer L. M. Evolution of olfaction in non-avian theropod dinosaurs and birds. Proc. R. Soc. B 278, 3625–3634 (2011). PubMed PMC
Mace G. M., Harvey P. H. & Clutton-Brock T. H. Brain size and ecology in small mammals. J. Zool. 193, 333–354 (1981). PubMed PMC
Iwaniuk A. N., Dean K. M. & Nelson J. E. A mosaic pattern characterizes the evolution of the avian brain. Proc. R. Soc. B 271, S148–S151 (2004). PubMed PMC
Sahin B. et al. Brain volumes of the lamb, rat and bird do not show hemispheric asymmetry: a stereological study. Image Anal. Stereol. 20, 9–13 (2001).
Garamszegi L. Z., Eens M., Erritzoe J. & Møller A. P. Sperm competition and sexually size dimorphic brains in birds. Proc. R. Soc. B 272, 159–166 (2005). PubMed PMC
Garamszegi L. Z., Eens M., Erritzoe J. & Møller A. P. Sexually size dimorphic brains and song complexity in passerine birds. Behav. Ecol. 16, 335–345.
Møller A. P., Erritzoe J. & Garamszegi L. Z. Covariation between brain size and immunity in birds: implications for brain size evolution. J. Evol. Biol. 18, 223–237 (2005). PubMed
Glen C. L. & Bennett M. B. Foraging modes of Mesozoic birds and non-avian theropods. Curr. Biol. 17, R911–R912 (2007). PubMed
Dial K. P., Jackson B. E. & Segre P. A fundamental avian wing-stroke provides a new perspective on the evolution of flight. Nature 451, 985–989 (2008). PubMed
Wang X., McGowan A. J. & Dyke G. J. Avian wing proportions and flight styles: first step towards predicting the flight modes of Mesozoic birds. PloS ONE 6(12), e28672 (2011). PubMed PMC
Hopson J. A. Relative brain size and behavior in archosaurian reptiles. Ann. Rev. Ecol. Syst. 8, 429–448 (1977).
Larsson H. C., Sereno P. C. & Wilson J. A. Forebrain enlargement among non-avian theropod dinosaurs. J. Vertebr. Paleont. 20, 615–618 (2000).
Dominguez P. A., Milner A. C., Ketcham R. A., Cookson M. J. & Rowe T. B. The avian nature of the brain and inner ear of Archaeopteryx. Nature 430, 666–669 (2004). PubMed
Kurochkin E. N., Dyke G. J., Saveliev S. V., Pervushov E. M. & Popov E. V. A fossil brain from the Cretaceous of European Russia and avian sensory evolution. Biol. Lett. 3, 309–313 (2007). PubMed PMC
Metscher B. D. MicroCT for comparative morphology: simple staining methods allow high-contrast 3D imaging of diverse non-mineralized animal tissues. BMC Physiology 9, 11 (2009). PubMed PMC
Kotrotsou A. et al. Ex vivo MR volumetry of human brain hemispheres. Magn. Reson. Med. 71, 364–374 (2014). PubMed PMC
Vellema M., Verschueren J., Van Meir V. & Van der Linden A. A customizable 3-dimensional digital atlas of the canary brain in multiple modalities. NeuroImage 57, 352–361 (2011). PubMed
Ebel K.-D. & Benz-Bohm G. CT and MRI features of brain neoplasms. In Ebel K.-D., Blickman H., Willich E. & Richter E. Eds. Differential Diagnosis in Pediatric Radiology. Stuttgart, Thieme, 538–547 (1999).
Güntürkün O., Verhoye M., De Groof G. & Van der Linden A. A 3-dimensional digital atlas of the ascending sensory and the descending motor systems in the pigeon brain. Brain Struct Funct 218, 269–281 (2013). PubMed
De Groof G. et al. A three-dimensional digital atlas of the starling brain. Brain Struct Funct (2015) 10.1007/s00429-015-1011-1. PubMed DOI
Cosgrove K. P., Mazure C. M. & Staley J. K. Evolving knowledge of sex differences in brain structure, function, and chemistry. Biol. Psychiat. 62, 847–55 (2007). PubMed PMC
Schoenemann P. T. Brain size scaling and body composition in mammals. Brain Behav. Evol. 63, 47–60 (2004). PubMed
Barton R. A. & Harvey P. H. Mosaic evolution of brain structure in mammals. Nature 405, 1055–1058 (2000). PubMed
Chiappe L. M., Marugán-Lobón J. & Zhou Z. Life history of a basal bird: morphometrics of the Early Cretaceous Confuciusornis. Biol. Lett. 4, 719–723 (2008). PubMed PMC
Peters W. S. & Peters D. S. Life history, sexual dimorphism and ‘ornamental’ feathers in the Mesozoic bird Confuciusornis sanctus. Biol. Lett. 5, 817–820 (2009). PubMed PMC
Chiappe L. M., Marugán-Lobón J. & Chinsamy A. Palaeobiology of the Cretaceous bird Confuciusornis: a comment on Peters & Peters (2009). Biol. Lett. 6, 529–530 (2010). PubMed PMC
Peters W. S. & Peters D. S. Sexual size dimorphism is the most consistent explanation for the body size spectrum of Confuciusornis sanctus. Biol. Lett. 6, 531–532 (2010).
(2010).
Milner A. C. & Walsh S. A. Avian brain evolution: new data from Palaeogene birds (Lower Eocene) from England. Zool. J. Linn. Soc. 155, 198–219 (2009).
Jarvis E. D. et al. Avian brains and a new understanding of vertebrate brain evolution. Nature Rev. 6, 151–159 (2005). PubMed PMC
Garamszegi L. Z., Møller A. P. & Erritzoe J. Coevolving avian eye size and brain size in relation to prey capture and nocturnality. Proc. R. Soc. B 269, 961–967 (2002). PubMed PMC
Sharp G., Kandasamy N., Singh H. & Folkert M. GPU-based streaming architectures for fast cone-beam CT image reconstruction and demons deformable registration. Phys. Med. Biol. 52, 5771–5783 (2007). PubMed
Kennan R. P., Richardson K. A., Zhong J., Maryanski M. J. & Gore J. C. The effects of cross-link density and chemical exchange on magnetization transfer in polyacrylamide gels. J. Magn. Reson. B 110, 267–277 (1996). PubMed
Fishbein K. W. et al. Effects of formalin fixation and collagen cross-linking on T2 and magnetization transfer in bovine nasal cartilage. Magn. Reson. Med. 57, 1000–1011 (2007). PubMed
Medawar P. B. The rate of penetration of fixatives. J. Roy. Microsc. Soc. 61, 46–57 (1941).
Dempster W. T. Rates of penetration of fixing fluids. Am. J. Anat. 107(1), 59–72 (1960). PubMed
Dawe R. J., Bennett D. A., Schneider J. A., Vasireddi S. K. & Arfanakis K. Postmortem MRI of human brain hemispheres: T2 relaxation times during formaldehyde fixation. Magn. Reson. Med. 61, 810–818 (2009). PubMed PMC
Cruz-Orive L. M. Stereology of single objects. J. Microsc. 186, 93–107 (1997).
Sandau K. How to estimate the area of a surface using the spatial grid. Acta Stereol. 6, 31 (1987).
Kubínová L. & Janáček J. Estimating surface area by the isotropic Fakir method from thick slices cut in an arbitrary direction. J. Microsc. 191, 201–211 (1998). PubMed
Mattfeldt T., Mobius H. J. & Mall G. Orthogonal triplet probes: an efficient method for unbiased estimation of length and surface of objects with unknown orientation in space. J. Microsc. 139, 279–289 (1985). PubMed
Janáček J. & Kubínová L. Variances of length and surface area estimates by spatial grids: preliminary study. Image Anal. Stereol. 29, 45–52 (2011).
Beucher S. & Lantuéjoul C. Use of watersheds in contour detection. In Proceedings International Workshop on Image Processing, Real-Time Edge and Motion Detection/Estimation, Rennes, France. September (1979).