Upscale of recombinant α-L-rhamnosidase production by Pichia pastoris Mut(S) strain
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
26539173
PubMed Central
PMC4611059
DOI
10.3389/fmicb.2015.01140
Knihovny.cz E-zdroje
- Klíčová slova
- Pichia pastoris, fermentation, recombinant enzyme, upscale, α-L-rhamnosidase,
- Publikační typ
- časopisecké články MeSH
Pichia pastoris is currently one of the most preferred microorganisms for recombinant enzyme production due to its efficient expression system. The advantages include the production of high amounts of recombinant proteins containing the appropriate posttranslational modifications and easy cultivation conditions. α-L-Rhamnosidase is a biotechnologically important enzyme in food and pharmaceutical industry, used for example in debittering of citrus fruit juices, rhamnose pruning from naringin, or enhancement of wine aromas, creating a demand for the production of an active and stable enzyme. The production of recombinant α-L-rhamnosidase cloned in the Mut(S) strain of P. pastoris KM71H was optimized. The encoding gene is located under the control of the AOX promoter, which is induced by methanol whose concentration is instrumental for these strain types. Fermentation was upscaled in bioreactors employing various media and several methanol-feeding strategies. It was found that fed batch with BSM media was more effective compared to BMMH (Buffered Methanol-complex Medium) media due to lower cost and improved biomass formation. In BSM (Basal Salt Medium) medium, the dry cell weight reached approximately 60 g/L, while in BMMH it was only 8.3 g/L, without additional glycerol, which positively influenced the amount of enzyme produced. New methanol feeding strategy, based on the level of dissolved oxygen was developed in this study. This protocol that is entirely independent on methanol monitoring was up scaled to a 19.5-L fermenter with 10-L working volume with the productivity of 13.34 mgprot/L/h and specific activity of α-L-rhamnosidase of 82 U/mg. The simplified fermentation protocol was developed for easy and effective fermentation of P. pastoris Mut(S) based on dissolved oxygen monitoring in the induction phase of an enzyme production.
Zobrazit více v PubMed
Bradford M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72 248–254. 10.1016/0003-2697(76)90527-3 PubMed DOI
Cereghino G. P. L., Cereghino J. L., Ilgen C. H., Cregg J. M. (2002). Production of recombinant proteins in fermenter cultures of the yeast Pichia pastoris. Curr. Opin. Biotechnol. 13 329–332. 10.1016/S0958-1669(02)00330-0 PubMed DOI
Cereghino J. L., Cregg J. M. (2000). Heterologous protein expression in the methylotrophic yeast Pichia pastoris. FEMS Microbiol. Rev. 24 45–66. 10.1111/j.1574-6976.2000.tb00532.x PubMed DOI
Curvers S., Brixius P., Klauser T., Thömmes J., Weuster-Botz D., Takors R., et al. (2001). Human chymotrypsinogen B production with Pichia pastoris by integrated development of fermentation and downstream processing. Part 1. Fermentation. Biotechnol. Progr. 17 495–502. 10.1021/bp000164j PubMed DOI
D’Anjou M. C., Daugulis A. J. (2001). A rational approach to improving productivity in recombinant Pichia pastoris fermentation. Biotechnol. Bioeng. 72 1–11. 10.1002/1097-0290(20010105)72:1<1::AID-BIT1>3.0.CO;2-T PubMed DOI
Deng L. Y., Kasper D. L., Krick T. P., Wessels M. R. (2000). Characterization of the linkage between the type III capsular polysaccharide and the bacterial cell wall of group B Streptococcus. J. Biol. Chem. 275 7497–7504. 10.1074/jbc.275.11.7497 PubMed DOI
Dietzsch C. H., Spadiut O., Herwig C. H. (2011a). A dynamic method based on the specific substrate uptake rate to set up a feeding strategy for Pichia pastoris. Microbial. Cell Fact. 10 14–22. 10.1186/1475-2859-10-14 PubMed DOI PMC
Dietzsch C. H., Spadiut O., Herwig C. H. (2011b). A fast approach to determine a fed batch feeding profile for recombinant Pichia pastoris strains. Microbial. Cell Fact. 10 85–94. 10.1186/1475-2859-10-85 PubMed DOI PMC
Duplan H., Raufast V., Mavon A., Ceruti I., Castex-Rizzi N., Charveron M. (2009). Bioavailability and pharmacological effect of a new pentyl rhamnoside on the inflamed skin. J. Investig. Dermatol. 129 800.
Faury G., Molinari J., Rusova E., Mariko B., Raveaud S., Huber P., et al. (2011). Receptors and aging: structural selectivity of the rhamnose-receptor on fibroblasts as shown by Ca2+-mobilization and gene-expression profiles. Arch. Gerontol. Geriatr. 53 106–112. 10.1016/j.archger.2010.05.017 PubMed DOI
Gerstorferová D., Fliedrová B., Halada P., Marhol P., Křen V., Weignerová L. (2012). Recombinant α-L-rhamnosidase from Aspergillus terreus in selective trimming of rutin. Process Biochem. 47 828–835. 10.1016/j.procbio.2012.02.014 DOI
Jahic M., Wallberg F., Bollok M., Garcia P., Enfors S. O. (2003). Temperature limited fed-batch technique for control of proteolysis in Pichia pastoris bioreactor cultures. Microbial. Cell Fact. 2 6–16. 10.1186/1475-2859-2-6 PubMed DOI PMC
Kaur A., Singh S., Singh R. S., Schwarz W. H., Puri M. (2010). Hydrolysis of citrus peel naringin by recombinant α-L-rhamnosidase from Clostridium stercorarium. J. Chem. Technol. Biotechnol. 85 1419–1422. 10.1002/jctb.2433 DOI
Khatri N. K., Hoffmann F. (2006). Impact of methanol concentration on secreted protein production in oxygen-limited cultures of recombinant Pichia pastoris. Biotechnol. Bioeng. 93 871–879. 10.1002/bit.20773 PubMed DOI
Křen V., Martínková L. (2001). Glycosides in medicine: the role of glycosidic residue in biological activity. Curr. Med. Chem. 8 1313–1338. 10.2174/0929867013372193 PubMed DOI
Laboureau J., Simonnet J.-T., Portes P., Lucet-Levannier K. (2010). Association de Monosaccharides avec des Agents Antioxydants et son Utilization en Cosmetique. European patent register No EP2204164 A1.
Oda Y., Saito K., Ohara-Takada A., Mori M. (2002). Hydrolysis of the potato glycoalkaloide-chaconine by filamentous fungi. J. Biosci. Bioeng. 94 321–325. 10.1016/S1389-1723(02)80171-2 PubMed DOI
Perez S., Rodriguez-Carvajal M. A., Doco T. (2003). A complex plant cell wall polysaccharide: rhamnogalacturonan II. A structure in quest of a function. Biochimie 85 109–121. 10.1016/S0300-9084(03)00053-1 PubMed DOI
Rebroš M., Pilniková A., Šimčková D., Weignerová L., Stloukal R., Křen V., et al. (2013). Recombinant α-L-rhamnosidase of Aspergillus terreus immobilization in polyvinylalcohol hydrogel and its application in rutin derhamnosylation. Biocatal. Biotransformation 31 329–334. 10.3109/10242422.2013.858711 DOI
Scaroni E., Cuevas C., Carrillo L., Ellenrieder G. (2002). Hydrolytic properties of crude α-L-rhamnosidases produced by several wild strains of mesophilic fungi. Lett. Appl. Microbiol. 34 461–465. 10.1046/j.1472-765X.2002.01115.x PubMed DOI
Wanderley M. S. O., Oliveira C., Bruneska D., Domingues L., Lima Filho J. L., Teixeira J. A., et al. (2013). Influence of trace elements supplementation on the production of recombinant frutalin by Pichia pastoris KM71H in fed-batch process. Chem. Papers 67 682–687. 10.2478/s11696-013-0363-3 DOI
Xie J., Zhang L., Ye Q., Zhou Q., Xin L., Du P., et al. (2003). Angiostatin production in cultivation of recombinant Pichia pastoris fed with mixed carbon sources. Biotechnol. Lett. 25 173–177. 10.1023/A:1021905010021 PubMed DOI
Yadav V., Yadav P. K., Yadav S., Yadav K. D. S. (2010). α-L-Rhamnosidase: a review. Process Biochem. 45 1226–1235. 10.1016/j.procbio.2010.05.025 DOI
Yanai T., Sato M. (2000). Purification and characterization of an α-L-rhamnosidase from Pichia angusta X349. Biosci. Biotechnol. Biochem. 64 2179–2185. 10.1271/bbb.64.2179 PubMed DOI
Yu H. S., Gong J. M., Zhang C. Z., Jin F. X. (2002). Purification and characterization of ginsenoside-α-L-rhamnosidase. Chem. Pharm. Bull. 50 175–178. 10.1248/cpb.50.175 PubMed DOI
Zalai D., Dietzsch C. H., Herwig C. H., Spadiut O. (2012). A dynamic fed batch strategy for a Pichia pastoris mixed feed system to increase process understanding. Biotechnol. Prog. 28 878–886. 10.1002/btpr.1551 PubMed DOI
Zhang W., Bevins M. A., Plantz B. A., Smith L. A., Meagher M. M. (2000). Modeling Pichia pastoris growth on methanol and optimizing the production of a recombinant protein, the heavy-chain fragment C of Botulinum neurotoxin, serotype A. Biotechnol. Bioeng. 70 1–8. 10.1002/1097-0290(20001005)70:1<1::AID-BIT1>3.0.CO;2-Y PubMed DOI
Zhang W., Potter K. J. H., Plantz B. A., Schlegel V. L., Smith L. A., Meagher M. M. (2003). Pichia pastoris fermentation with mixed-feeds of glycerol and methanol: growth kinetics and production improvement. J. Ind. Microbiol. Biotechnol. 30 210–215. 10.1007/s10295-003-0035-3 PubMed DOI
Zhang Z., Zhang B.-L., Xie T., Li G.-C., Tuo Y., Xiang Y.-T. (2015). Biotransformation of rutin to isoquercitrin using recombinant α-L-rhamnosidase from Bifidobacterium breve. Biotechnol. Lett. 37 1257–1264. 10.1007/s10529-015-1792-6 PubMed DOI
"Sweet Flavonoids": Glycosidase-Catalyzed Modifications
Potential of Pichia pastoris for the production of industrial penicillin G acylase