De novo transcriptome profiling of cold-stressed siliques during pod filling stages in Indian mustard (Brassica juncea L.)
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic-ecollection
Document type Journal Article
PubMed
26579175
PubMed Central
PMC4626631
DOI
10.3389/fpls.2015.00932
Knihovny.cz E-resources
- Keywords
- Brassica juncea, RNA-seq, cold stress, low temperature, silique, transcriptome,
- Publication type
- Journal Article MeSH
Low temperature is a major abiotic stress that impedes plant growth and development. Brassica juncea is an economically important oil seed crop and is sensitive to freezing stress during pod filling subsequently leading to abortion of seeds. To understand the cold stress mediated global perturbations in gene expression, whole transcriptome of B. juncea siliques that were exposed to sub-optimal temperature was sequenced. Manually self-pollinated siliques at different stages of development were subjected to either short (6 h) or long (12 h) durations of chilling stress followed by construction of RNA-seq libraries and deep sequencing using Illumina's NGS platform. De-novo assembly of B. juncea transcriptome resulted in 133,641 transcripts, whose combined length was 117 Mb and N50 value was 1428 bp. We identified 13,342 differentially regulated transcripts by pair-wise comparison of 18 transcriptome libraries. Hierarchical clustering along with Spearman correlation analysis identified that the differentially expressed genes segregated in two major clusters representing early (5-15 DAP) and late stages (20-30 DAP) of silique development. Further analysis led to the discovery of sub-clusters having similar patterns of gene expression. Two of the sub-clusters (one each from the early and late stages) comprised of genes that were inducible by both the durations of cold stress. Comparison of transcripts from these clusters led to identification of 283 transcripts that were commonly induced by cold stress, and were referred to as "core cold-inducible" transcripts. Additionally, we found that 689 and 100 transcripts were specifically up-regulated by cold stress in early and late stages, respectively. We further explored the expression patterns of gene families encoding for transcription factors (TFs), transcription regulators (TRs) and kinases, and found that cold stress induced protein kinases only during early silique development. We validated the digital gene expression profiles of selected transcripts by qPCR and found a high degree of concordance between the two analyses. To our knowledge this is the first report of transcriptome sequencing of cold-stressed B. juncea siliques. The data generated in this study would be a valuable resource for not only understanding the cold stress signaling pathway but also for introducing cold hardiness in B. juncea.
Department of Botany University of Delhi New Delhi India
Department of Plant Molecular Biology University of Delhi New Delhi India
See more in PubMed
Agarwal M., Hao Y., Kapoor A., Dong C. H., Fujii H., Zheng X., et al. . (2006). A R2R3 type MYB transcription factor is involved in the cold regulation of CBF genes and in acquired freezing tolerance. J. Biol. Chem. 281, 37636–37645. 10.1074/jbc.M605895200 PubMed DOI
Antikainen M., Griffith M. (1997). Antifreeze protein accumulation in freezing tolerant cereals. Physiol. Plant. 99, 423–432. 10.1111/j.1399-3054.1997.tb00556.x DOI
Bakshi M., Oelmüller R. (2014). WRKY transcription factors: jack of many trades in plants. Plant Signal. Behav. 9:e27700. 10.4161/psb.27700 PubMed DOI PMC
Barah P., Jayavelu N. D., Rasmussen S., Nielsen H. B., Mundy J., Bones A. M. (2013). Genome-scale cold stress response regulatory networks in ten Arabidopsis thaliana ecotypes. BMC Genomics 14:722. 10.1186/1471-2164-14-722 PubMed DOI PMC
Basyuni M., Baba S., Inafuku M., Iwasaki H., Kinjo K., Oku H. (2009). Expression of terpenoid synthase mRNA and terpenoid content in salt stressed mangrove. J. Plant Physiol. 166, 1786–1800. 10.1016/j.jplph.2009.05.008 PubMed DOI
Battaglia M., Olvera-Carrillo Y., Garciarrubio A., Campos F., Covarrubias A. A. (2008). The enigmatic LEA proteins and other hydrophilins. Plant Physiol. 148, 6–24. 10.1104/pp.108.120725 PubMed DOI PMC
Bouchereau A., Aziz A., Larher F., Martin-Tangui J. (1999). Polyamines and environmental challenges: recent development. Plant Sci. 140, 103–125. 10.1016/S0168-9452(98)00218-0 DOI
Branca F., Cartea E. (2011). Brassica. Chapter 2, in Wild Crop Relatives: Genomic and Breeding Resources, Oilseeds, ed Kole C. (Berlin; Heidelberg: Springer-Verlag; ), 17–36. 10.1007/978-3-642-14871-2_2 DOI
Cattivelli L., Crosatti C., Rizza F. (1995). Increasing in membrane stability and COR14 accumulation associated with cold-hardening in oats. J. Gen. Breed. 49, 333–338.
Chen T. H., Murata N. (2008). Glycinebetaine: an effective protectant against abiotic stress in plants. Trends Plant Sci. 13, 499–505. 10.1016/j.devcel.2014.12.023 PubMed DOI
Chen T. W., Gan R. C., Wu T. H., Huang P. J., Lee C. Y., Chen Y. Y., et al. . (2012a). FastAnnotator–an efficient transcript annotation web tool. BMC Genomics 13(Suppl. 7):S9. 10.1186/1471-2164-13-S7-S9 PubMed DOI PMC
Chen L., Song Y., Li S., Zhang L., Zou C., Yu D. (2012b). The role of WRKY transcription factors in plant abiotic stresses. Biochim. Biophys. Acta 1819, 120–128. 10.1016/j.bbagrm.2011.09.002 PubMed DOI
Chinnusamy V., Ohta M., Kanrar S., Lee B. H., Hong X., Agarwal M., et al. . (2003). ICE1:a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis. Genes Dev. 17, 1043–1054. 10.1101/gad.1077503 PubMed DOI PMC
Chinnusamy V., Zhu J., Zhu J. K. (2007). Cold stress regulation of gene expression in plants. Trends Plant Sci. 12, 444–451. 10.1016/j.tplants.2007.07.002 PubMed DOI
Chinnusamy V., Zhu J. K., Sunkar R. (2010). Gene regulation during cold stress acclimation in plants. Methods Mol. Biol. 639, 39–55. 10.1007/978-1-60761-702-0_3 PubMed DOI PMC
Cook D., Fowler S., Fiehn O., Thomashow M. F. (2004). A prominent role for the CBF cold response pathway in configuring the low-temperature metabolome of Arabidopsis. Proc. Natl. Acad. Sci. U.S.A. 101, 15243–15248. 10.1073/pnas.0406069101 PubMed DOI PMC
Creelman R. A., Mullet J. E. (1995). Jasmonic acid distribution and action in plants: regulation during development and response to biotic and abiotic stress. Proc. Natl. Acad. Sci. U.S.A. 92, 4114–4119. 10.1073/pnas.92.10.4114 PubMed DOI PMC
Crosatti C., Soncini C., Stanca A. M., Cattivelli L. (1995). The accumulation of a cold-regulated chloroplastic protein is light-dependent. Planta 196, 458–463. 10.1007/BF00203644 PubMed DOI
Dai X., Xu Y., Ma Q., Xu W., Wang T., Xue Y., et al. . (2007). Overexpression of an R1R2R3 MYB gene, OsMYB3R-2, increases tolerance to freezing, drought, and salt stress in transgenic Arabidopsis. Plant Physiol. 143, 1739–1751. 10.1104/pp.106.094532 PubMed DOI PMC
Ding Y., Li H., Zhang X., Xie Q., Gong Z., Yang S. (2015). OST1 kinase modulates freezing tolerance by enhancing ICE1 stability in Arabidopsis. Dev. Cell 32, 278–289. 10.1016/j.devcel.2014.12.023 PubMed DOI
Doherty C. J., Van Buskirk H. A., Myers S. J., Thomashow M. F. (2009). Roles for Arabidopsis CAMTA transcription factors in cold-regulated gene expression and freezing tolerance. Plant Cell 21, 972–984. 10.1105/tpc.108.063958 PubMed DOI PMC
Dong M. A., Farré E. M., Thomashow M. F. (2011). Circadian clock-associated 1 and late elongated hypocotyl regulate expression of the C-repeat binding factor (CBF) pathway in Arabidopsis. Proc. Natl. Acad. Sci. U.S.A. 108, 7241–7246. 10.1073/pnas.1103741108 PubMed DOI PMC
Edgar R., Domrachev M., Lash A. E. (2002). Gene expression omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 30, 207–210. 10.1093/nar/30.1.207 PubMed DOI PMC
Espinoza C., Bieniawska Z., Hincha D. K., Hannah M. A. (2008). Interactions between the circadian clock and cold-response in Arabidopsis. Plant Signal. Behav. 3, 593–594. 10.4161/psb.3.8.6340 PubMed DOI PMC
Feder N., O'brien T. P. (1968). Plant microtechnique: some principles and new methods. Am. J. Bot. 55, 123–142. 10.2307/2440500 DOI
Fernandez P., Di Rienzo J., Fernandez L., Hopp H. E., Paniego N., Heinz R. A. (2008). Transcriptomic identification of candidate genes involved in sunflower responses to chilling and salt stresses based on cDNA microarray analysis. BMC Plant Biol. 8:11. 10.1186/1471-2229-8-11 PubMed DOI PMC
Fowler S. G., Cook D., Thomashow M. F. (2005). Low temperature induction of Arabidopsis CBF1, 2, and 3 is gated by the circadian clock. Plant Physiol. 137, 961–968. 10.1104/pp.104.058354 PubMed DOI PMC
Fowler S., Thomashow M. F. (2002). Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway. Plant Cell 14, 1675–1690. 10.1105/tpc.003483 PubMed DOI PMC
Franklin K. A., Whitelam G. C. (2007). Light-quality regulation of freezing tolerance in Arabidopsis thaliana. Nat. Genet. 39, 1410–1413. 10.1038/ng.2007.3 PubMed DOI
Fujii H., Verslues P. E., Zhu J. K. (2011). Arabidopsis decuple mutant reveals the importance of SnRK2 kinases in osmotic stress responses in vivo. Proc. Natl. Acad. Sci. U.S.A. 108, 1717–1722. 10.1073/pnas.1018367108 PubMed DOI PMC
Fujii H., Zhu J. K. (2009). Arabidopsis mutant deficient in 3 abscisic acid-activated protein kinases reveals critical roles in growth, reproduction, and stress. Proc. Natl. Acad. Sci. U.S.A. 106, 8380–8385. 10.1073/pnas.0903144106 PubMed DOI PMC
Fursova O. V., Pogorelko G. V., Tarasov V. A. (2009). Identification of ICE2, a gene involved in cold acclimation which determines freezing tolerance in Arabidopsis thaliana. Gene 429, 98–103. 10.1016/j.gene.2008.10.016 PubMed DOI
Gilmour S. J., Sebolt A. M., Salazar M. P., Everard J. D., Thomashow M. F. (2000). Overexpression of the Arabidopsis CBF3 transcriptional activator mimics multiple biochemical changes associated with cold acclimation. Plant Physiol. 124, 1854–1865. 10.1104/pp.124.4.1854 PubMed DOI PMC
Gilmour S. J., Zarka D. G., Stockinger E. J., Salazar M. P., Houghton J. M., Thomashow M. F. (1998). Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression. Plant J. 16, 433–442. 10.1046/j.1365-313x.1998.00310.x PubMed DOI
Griffith M., Antikainen M., Hon W. C., Pihakaski-Maunsbach K., Yu X. M., Chun J. U., et al. (1997). Antifreeze proteins in winter rye. Physiol. Plant. 100, 327–332. PubMed PMC
Gusta L. V., Wisniewski M., Nesbitt N. T., Gusta M. L. (2004). The effect of water, sugars, and proteins on the pattern of ice nucleation and propagation in acclimated and nonacclimated canola leaves. Plant Physiol. 135, 1642–1653. 10.1104/pp.103.028308 PubMed DOI PMC
Haas B. J., Papanicolaou A., Yassour M., Grabherr M., Blood P. D., Bowden J., et al. . (2013). De novo transcript sequence reconstruction from RNA-seq using the trinity platform for reference generation and analysis. Nat. protoc. 8, 1494–1512. 10.1038/nprot.2013.084 PubMed DOI PMC
Hare P. D., Cress W. A., Van Staden J. (1998). Dissecting the roles of osmolyte accumulation during stress. Plant Cell Environ. 21, 535–553. 10.1046/j.1365-3040.1998.00309.x DOI
Hausman J. F., Evers D., Thiellement H., Jouve L. (2000). Compared responses of poplar cuttings and in vitro raised shoots to short-term chilling treatments. Plant Cell Rep. 19, 954–960. 10.1007/s002990000229 PubMed DOI
James A. B., Syed N. H., Bordage S., Marshall J., Nimmo G. A., Jenkins G. I., et al. (2012).Alternative splicing mediates responses of the Arabidopsis circadian clock to temperature changes. Plant cell 24, 961–981. 10.1105/tpc.111.093948 PubMed DOI PMC
Janská A., Marsík P., Zelenková S., Ovesná J. (2010). Cold stress and acclimation—what is important for metabolic adjustment? Plant Biol. 12, 395–405. 10.1111/j.1438-8677.2009.00299.x PubMed DOI
Kaplan F., Guy C. L. (2004). β-Amylase induction and the protective role of maltose during temperature shock. Plant Physiol. 135, 1674–1684. 10.1104/pp.104.040808 PubMed DOI PMC
Karnovsky M. (1965). A formaldehyde-glutaraldehyde fixative of high osmolality for use in electron microscopy. J. Cell Biol. 27, 137–138.
Kasuga M., Liu Q., Miura S., Yamaguchi-Shinozaki K., Shinozaki K. (1999). Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat. Biotechnol. 17, 287–291. 10.1038/7036 PubMed DOI
Kayum M. A., Jung H. J., Park J. I., Ahmed N. U., Saha G., Yang T. J., et al. . (2015). Identification and expression analysis of WRKY family genes under biotic and abiotic stresses in Brassica rapa. Mol. Genet. Genomics 290, 79–95. 10.1007/s00438-014-0898-1 PubMed DOI
Kemen A. C., Honkanen S., Melton R. E., Findlay K. C., Mugford S. T., Hayashi K., et al. . (2014). Investigation of triterpene synthesis and regulation in oats reveals a role for beta-amyrin in determining root epidermal cell patterning. Proc. Natl. Acad. Sci. U.S.A. 111, 8679–8684. 10.1073/pnas.1401553111 PubMed DOI PMC
Kim K. N., Cheong Y. H., Grant J. J., Pandey G. K., Luan S. (2003). CIPK3, a calcium sensor-associated protein kinase that regulates abscisic acid and cold signal transduction in Arabidopsis. Plant Cell 15, 411–423. 10.1105/tpc.006858 PubMed DOI PMC
Krause E., Dathe M., Wieprecht T., Bienert M. (1999). Noncovalent immobilized artificial membrane chromatography, an improved method for describing peptide-lipid bilayer interactions. J. chromatogr. A 849, 125–133. 10.1016/S0021-9673(99)00528-2 PubMed DOI
Langmead B., Salzberg S. L. (2012). Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359. 10.1038/nmeth.1923 PubMed DOI PMC
Lee B. H., Lee H., Xiong L., Zhu J. K. (2002). A mitochondrial complex I defect impairs cold-regulated nuclear gene expression. Plant Cell 14, 1235–1251. 10.1105/tpc.010433 PubMed DOI PMC
Lee C. M., Thomashow M. F. (2012). Photoperiodic regulation of the C-repeat binding factor (CBF) cold acclimation pathway and freezing tolerance in Arabidopsis thaliana. Proc. Natl. Acad. Sci. U.S.A. 109, 15054–15059. 10.1073/pnas.1211295109 PubMed DOI PMC
Lee S. C., Lim M. H., Kim J. A., Lee S. I., Kim J. S., Jin M., et al. . (2008). Transcriptome analysis in Brassica rapa under the abiotic stresses using Brassica 24K oligo microarray. Mol. Cells 26, 595–605. PubMed
Levitt J. (1980). Responses of Plants to Environmental Stress, 2nd Edn. New York, NY: Academic Press; Vol. 1.
Li B., Dewey C. N. (2011). RSEM: accurate transcript quantification from RNA-seq data with or without a reference genome. BMC Bioinformatics 12:323. 10.1186/1471-2105-12-323 PubMed DOI PMC
Lin C., Song W., Bi X., Zhao J., Huang Z., Li Z., et al. . (2014). Recent advances in the ARID family: focusing on roles in human cancer. Onco Targets Ther. 7, 315–324. 10.2147/OTT.S57023 PubMed DOI PMC
Liu Q., Kasuga M., Sakuma Y., Abe H., Miura S., Yamaguchi-Shinozaki K., et al. . (1998). Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA-binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression in Arabidopsis. Plant Cell 10, 1391–1406. 10.1105/tpc.10.8.1391 PubMed DOI PMC
Livak K. J., Schmittgen T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25, 402–408. 10.1006/meth.2001.1262 PubMed DOI
Lu S. X., Tobin E. M. (2011). Chromatin remodeling and the circadian clock: Jumonji C-domain containing proteins. Plant Signal. Behav. 6, 810–814. 10.4161/psb.6.6.15171 PubMed DOI PMC
Ma Y., Szostkiewicz I., Korte A., Moes D., Yang Y., Christmann A., et al. . (2009). Regulators of PP2C phosphatase activity function as abscisic acid sensors. Science 324, 1064–1068. 10.1126/science.1172408 PubMed DOI
Maibam P., Nawkar G. M., Park J. H., Sahi V. P., Lee S. Y., Kang C. H. (2013). The influence of light quality, circadian rhythm, and photoperiod on the CBF-mediated freezing tolerance. Int. J. Mol. Sci. 14, 11527–11543. 10.3390/ijms140611527 PubMed DOI PMC
Mao Y., Pavangadkar K. A., Thomashow M. F., Triezenberg S. J. (2006). Physical and functional interactions of Arabidopsis ADA2 transcriptional coactivator proteins with the acetyltransferase GCN5 and with the cold-induced transcription factor CBF1. Biochim. Biophys. Acta 1759, 69–79. 10.1016/j.bbaexp.2006.02.006 PubMed DOI
Marè C., Mazzucotelli E., Crosatti C., Francia E., Stanca A. M., Cattivelli L. (2004). Hv-WRKY38: a new transcription factor involved in cold- and drought-response in barley. Plant Mol. Biol. 55, 399–416. 10.1007/s11103-004-0906-7 PubMed DOI
Maruyama K., Sakuma Y., Kasuga M., Ito Y., Seki M., Goda H., et al. . (2004). Identification of cold-inducible downstream genes of the Arabidopsis DREB1A/CBF3 transcriptional factor using two microarray systems. Plant J. 38, 982–993. 10.1111/j.1365-313X.2004.02100.x PubMed DOI
Mikkelsen M. D., Thomashow M. F. (2009). A role for circadian evening elements in cold-regulated gene expression in Arabidopsis. Plant J. 60, 328–339. 10.1111/j.1365-313X.2009.03957.x PubMed DOI
Nakashima K., Yamaguchi-Shinozaki K. (2013). ABA signaling in stress-response and seed development. Plant Cell Rep. 32, 959–970. 10.1007/s00299-013-1418-1 PubMed DOI
Nasrollahi V., Mirzaie-asl A., Piri K., Nazeri S., Mehrabi R. (2014). The effect of drought stress on the expression of key genes involved in the biosynthesis of triterpenoid saponins in liquorice (Glycyrrhiza glabra). Phytochemistry 103, 32–37. 10.1016/j.phytochem.2014.03.004 PubMed DOI PMC
O'Brien T. P., McCully M. E. (1981). The Study of Plant Structure: Principles and Selected Methods. Melbourne, VIC: Termarcarphi Pty. Ltd.
Patel R. K., Jain M. (2012). NGS QC toolkit: a toolkit for quality control of next generation sequencing data. PLoS ONE 7:e30619. 10.1371/journal.pone.0030619 PubMed DOI PMC
Pavangadkar K., Thomashow M. F., Triezenberg S. J. (2010). Histone dynamics and roles of histone acetyltransferases during cold-induced gene regulation in Arabidopsis. Plant Mol. Biol. 74, 183–200. 10.1007/s11103-010-9665-9 PubMed DOI
Prakash S., Hinata K. (1980). Taxonomy, Cytogenetics And Origin of Crop Brassicas: A Review (Opera botanica). Vol. 55 Sweden: Lund Botanical Society.
Prasada Rao G. S. L. H. V., Rao V. U. M., Rao G. G. S. N. (2010). Climate Change and Agriculture Over India. Delhi: P. H. I. Publisher.
Preston J. C., Hileman L. C. (2013). Functional evolution in the plant SQUAMOSA-promoter binding protein-like (SPL) gene family. Front. Plant Sci. 4:80. 10.3389/fpls.2013.00080 PubMed DOI PMC
Rabbani M. A., Maruyama K., Abe H., Khan M. A., Katsura K., Ito Y., et al. . (2003). Monitoring expression profiles of rice genes under cold, drought, and high-salinity stresses and abscisic acid application using cDNA microarray and RNA gel-blot analyses. Plant Physiol. 133, 1755–1767. 10.1104/pp.103.025742 PubMed DOI PMC
Rakow G. (2004). Species origin and economic importance of Brassica, in Brassica, eds Pua E.-C., Douglas C. (Berlin; Heidelberg: Springer; ), 3–11.
Robinson M. D., Oshlack A. (2010). A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol. 11:R25. 10.1186/gb-2010-11-3-r25 PubMed DOI PMC
Schaller F., Biesgen C., Müssig C., Altmann T., Weiler E. W. (2000). 12-Oxophytodienoate reductase 3 (OPR3) is the isoenzyme involved in jasmonate biosynthesis. Planta 210, 979–984. 10.1007/s004250050706 PubMed DOI
Schwartz S. H., Tan B. C., Gage D. A., Zeevaart J. A., McCarty D. R. (1997). Specific oxidative cleavage of carotenoids by VP14 of maize. Science 276, 1872–1874. 10.1126/science.276.5320.1872 PubMed DOI
Seki M., Narusaka M., Abe H., Kasuga M., Yamaguchi-Shinozaki K., Carninci P., et al. . (2001). Monitoring the expression pattern of 1300 Arabidopsis genes under drought and cold stresses by using a full-length cDNA microarray. Plant Cell 13, 61–72. 10.1105/tpc.13.1.61 PubMed DOI PMC
Seki M., Narusaka M., Ishida J., Nanjo T., Fujita M., Oono Y., et al. . (2002). Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray. Plant J. 31, 279–292. 10.1046/j.1365-313X.2002.01359.x PubMed DOI
Seo P. J., Park J. M., Kang S. K., Kim S. G., Park C. M. (2011). An Arabidopsis senescence-associated protein SAG29 regulates cell viability under high salinity. Planta 233, 189–200. 10.1007/s00425-010-1293-8 PubMed DOI
Shekhawat K., Rathore S. S., Premi O. P., Kandpal B. K., Chauhan J. S. (2012). Advances in agronomic management of Indian Mustard (Brassica juncea (L.) Czernj. Cosson): an overview. Int. J. Agron. 14:408284 10.1155/2012/408284 DOI
Shi H., Ye T., Zhong B., Liu X., Jin R., Chan Z. (2014). AtHAP5A modulates freezing stress resistance in Arabidopsis through binding to CCAAT motif of AtXTH21. New Phytol. 203, 554–567. 10.1111/nph.12812 PubMed DOI
Shinozaki K., Yamaguchi-Shinozaki K. (1996). Molecular responses to drought and cold stress. Curr. Opin. Biotechnol. 7, 161–167. 10.1016/S0958-1669(96)80007-3 PubMed DOI
Sims D., Sudbery I., Ilott N. E., Heger A., Ponting C. P. (2014). Sequencing depth and coverage: key considerations in genomic analyses. Nat. Rev. Genet. 15, 121–132. 10.1038/nrg3642 PubMed DOI
Solanke A. U., Sharma A. K. (2008). Signal transduction during cold stress in plants. Physiol. Mol. Biol. Plants 14, 69–79. 10.1007/s12298-008-0006-2 PubMed DOI PMC
Steponkus P. L., Uemura M., Joseph R. A., Gilmour S. J., Thomashow M. F. (1998). Mode of action of the COR15a gene on the freezing tolerance of Arabidopsis thaliana. Proc. Natl. Acad. Sci. U.S.A. 95, 14570–14575. 10.1073/pnas.95.24.14570 PubMed DOI PMC
Stockinger E. J., Mao Y., Regier M. K., Triezenberg S. J., Thomashow M. F. (2001). Transcriptional adaptor and histone acetyltransferase proteins in Arabidopsis and their interactions with CBF1, a transcriptional activator involved in cold-regulated gene expression. Nucleic Acids Res. 29, 1524–1533. 10.1093/nar/29.7.1524 PubMed DOI PMC
Thakur P., Kumar S., Malik J. A., Berger J. D., Nayyar H. (2010). Cold stress effects on reproductive development in grain crops: an overview. Environ. Exp. Bot. 67, 429–443. 10.1016/j.envexpbot.2009.09.004 DOI
Thomashow M. F. (1998). Role of cold-responsive genes in plant freezing tolerance. Plant Phys. 118, 1–8. 10.1104/pp.118.1.1 PubMed DOI PMC
Tu S., Teng Y. C., Yuan C., Wu Y. T., Chan M. Y., Cheng A. N., et al. . (2008). The ARID domain of the H3K4 demethylase RBP2 binds to a DNA CCGCCC motif. Nat. Struct. Mol. Biol. 15, 419–421. 10.1038/nsmb.1400 PubMed DOI
Umezawa T., Sugiyama N., Mizoguchi M., Hayashi S., Myouga F., Yamaguchi-Shinozaki K., et al. . (2009). Type 2C protein phosphatases directly regulate abscisic acid-activated protein kinases in Arabidopsis. Proc. Natl. Acad. Sci. U.S.A. 106, 17588–17593. 10.1073/pnas.0907095106 PubMed DOI PMC
Vannini C., Locatelli F., Bracale M., Magnani E., Marsoni M., Osnato M., et al. . (2004). Overexpression of the rice Osmyb4 gene increases chilling and freezing tolerance of Arabidopsis thaliana plants. Plant J. 37, 115–127. 10.1046/j.1365-313X.2003.01938.x PubMed DOI
Vlad F., Rubio S., Rodrigues A., Sirichandra C., Belin C., Robert N., et al. . (2009). Protein phosphatases 2C regulate the activation of the Snf1-related kinase OST1 by abscisic acid in Arabidopsis. Plant cell 21, 3170–3184. 10.1105/tpc.109.069179 PubMed DOI PMC
Wang L., Zhu W., Fang L., Sun X., Su L., Liang Z., et al. . (2014). Genome-wide identification of WRKY family genes and their response to cold stress in Vitis vinifera. BMC Plant Biol. 14:103. 10.1186/1471-2229-14-103 PubMed DOI PMC
Warwick S. I., Black L. D. (1991). Molecular systematics of Brassica and allied genera (Subtribe Brassicinae, Brassiceae) -chloroplast genome and cytodeme congruence. TAG Theor. Appl. Genet. 82, 81–92. 10.1007/bf00231281 PubMed DOI
Wisniewski J., Orosz A., Allada R., Wu C. (1996). The C-terminal region of Drosophila heat shock factor (HSF) contains a constitutively functional transactivation domain. Nucleic Acids Res. 24, 367–374. PubMed PMC
Yuan M., Wang S. (2013). Rice MtN3/saliva/SWEET family genes and their homologs in cellular organisms. Mol. Plant 6, 665–674. 10.1093/mp/sst035 PubMed DOI
Zhou Q. Y., Tian A. G., Zou H. F., Xie Z. M., Lei G., Huang J., et al. . (2008). Soybean WRKY-type transcription factor genes, GmWRKY13, GmWRKY21, and GmWRKY54, confer differential tolerance to abiotic stresses in transgenic Arabidopsis plants. Plant Biotechnol. J. 6, 486–503. 10.1111/j.1467-7652.2008.00336.x PubMed DOI
Zhu J., Dong C. H., Zhu J. K. (2007). Interplay between cold-responsive gene regulation, metabolism and RNA processing during plant cold acclimation. Curr. Opin. Plant Biol. 10, 290–295. 10.1016/j.pbi.2007.04.010 PubMed DOI