• This record comes from PubMed

Computational study of productive and non-productive cycles in fluoroalkene metathesis

. 2015 ; 11 () : 2150-7. [epub] 20151110

Status PubMed-not-MEDLINE Language English Country Germany Media electronic-ecollection

Document type Journal Article

A detailed DFT study of the mechanism of metathesis of fluoroethene, 1-fluoroethene, 1,1-difluoroethene, cis- and trans-1,2-difluoroethene, tetrafluoroethene and chlorotrifluoroethene catalysed with the Hoveyda-Grubbs 2(nd) generation catalyst was performed. It revealed that a successful metathesis of hydrofluoroethenes is hampered by a high preference for a non-productive catalytic cycle proceeding through a ruthenacyclobutane intermediate bearing fluorines in positions 2 and 4. Moreover, the calculations showed that the cross-metathesis of perfluoro- or perhaloalkenes should be a feasible process and that the metathesis is not very sensitive to stereochemical issues.

See more in PubMed

Grubbs R H, Wenzel A G, O’Leary D J, et al., editors. Handbook of Organic Chemistry. 2nd ed. New York, NY, U.S.A.: Wiley & Sons; 2015.

Grela K, editor. Olefin Metathesis: Theory and Practice. New York, NY, U.S.A.: Wiley & Sons; 2014.

Cossy J, Arseniyadis S, Meyer C, et al., editors. Metathesis in Natural Product Synthesis: Strategies, Substrates and Catalysts. New York, NY, U.S.A.: Wiley & Sons; 2010.

Koh M J, Khan R K M, Torker S, Yu M, Mikus M S, Hoveyda A H. Nature. 2015;517:181–186. doi: 10.1038/nature14061. PubMed DOI

Nelson D J, Manzini S, Urbina-Blanco C A, Nolan S P. Chem Commun. 2014;50:10355–10375. doi: 10.1039/C4CC02515F. PubMed DOI

Fürstner A. Science. 2013;341:No. 6152. doi: 10.1126/science.1229713. PubMed DOI

Vougioukalakis G C, Grubbs R H. Chem Rev. 2010;110:1746–1787. doi: 10.1021/cr9002424. PubMed DOI

Bieniek M, Michrowska A, Usanov D L, Grela K. Chem – Eur J. 2008;14:806–818. doi: 10.1002/chem.200701340. PubMed DOI

Credendino R, Poater A, Ragone F, Cavallo L. Catal Sci Technol. 2011;1:1287–1297. doi: 10.1039/c1cy00052g. DOI

Falivene L, Poater A, Cavallo L. Tuning and Quantifying Steric and Electronic Effects of N-Heterocyclic Carbenes. In: Nolan S P, editor. N-Heterocyclic Carbenes: Effective Tools for Organometallic Synthesis. New York, NY, U.S.A.: Wiley-VCH; 2014. pp. 25–38.

Poater A, Falivene L, Cavallo L. Theoretical Attempts: “In Silico Olefin Metathesis”—How Can Computers Help in the Understanding of Metathesis Mechanisms and in Catalysts Development? In: Grela K, editor. Olefin Metathesis: Theory and Practice. New York, NY, U.S.A.: Wiley; 2014. pp. 483–494.

van der Eide E F, Piers W E. Nat Chem. 2010;2:571–576. doi: 10.1038/nchem.653. PubMed DOI

Leitao E M, van der Eide E F, Romero P E, Piers W E, McDonald R. J Am Chem Soc. 2010;132:2784–2794. doi: 10.1021/ja910112m. PubMed DOI

Vummaleti S V C, Cavallo L, Poater A. Theor Chem Acc. 2015;134:22–27. doi: 10.1007/s00214-015-1622-x. DOI

Engle K M, Lu G, Luo S X, Henling L M, Michael K, Takase M K, Liu P, Houk K N, Grubbs R H. J Am Chem Soc. 2015;137:5782–5792. doi: 10.1021/jacs.5b01144. PubMed DOI

Manzini S, Urbina-Blanco C A, Nelson D J, Poater A, Lebl T, Meiries S, Slawin A M Z, Falivene L, Cavallo L, Nolan S P. J Organomet Chem. 2015;780:43–48. doi: 10.1016/j.jorganchem.2014.12.040. DOI

Poater A, Pump E, Vummaleti S V C, Cavallo L. J Chem Theory Comput. 2014;10:4442–4448. doi: 10.1021/ct5003863. PubMed DOI

Ashworth I W, Hillier I H, Nelson D J, Percy J M, Vincent M A. ACS Catal. 2013;3:1929–1939. doi: 10.1021/cs400164w. DOI

Kvíčala J, Schindler M, Kelbichová V, Babuněk M, Rybáčková M, Kvíčalová M, Cvačka J, Březinová A. J Fluorine Chem. 2013;153:12–25. doi: 10.1016/j.jfluchem.2013.06.001. DOI

Urbina-Blanco C A, Poater A, Lebl T, Manzini S, Slawin A M Z, Cavallo L, Nolan S P. J Am Chem Soc. 2013;135:7073–7079. doi: 10.1021/ja402700p. PubMed DOI

Poater A, Falivene L, Urbina-Blanco C A, Manzini S, Nolan S P, Cavallo L. Dalton Trans. 2013;42:7433–7439. doi: 10.1039/c3dt32980a. PubMed DOI

Nuñez-Zarur F, Solans-Monfort X, Rodrıguez-Santiago L, Sodupe M. Organometallics. 2012;31:4203–4215. doi: 10.1021/om300150d. DOI

Fustero S, Simón-Fuentes A, Barrio P, Haufe G. Chem Rev. 2015;115:871–930. doi: 10.1021/cr500182a. PubMed DOI

Chatterjee A K, Morgan J P, Scholl M, Grubbs R H. J Am Chem Soc. 2000;122:3783–3784. doi: 10.1021/ja9939744. DOI

Imhof S, Randl S, Blechert S. Chem Commun. 2001:1692–1693. doi: 10.1039/B105031C. PubMed DOI

Cuñat A C, Flores S, Oliver J, Fustero S. Eur J Org Chem. 2011:7317–7323. doi: 10.1002/ejoc.201101091. DOI

Eignerová B, Slavíková B, Buděšínský M, Dračínský M, Klepetářová B, Št’astná E, Kotora M. J Med Chem. 2009;52:5753–5757. doi: 10.1021/jm900495f. PubMed DOI

Marhold M, Stillig C, Fröhlich R, Haufe G. Eur J Org Chem. 2014:5777–5785. doi: 10.1002/ejoc.201402535. DOI

Salim S S, Bellingham R K, Satcharoen V, Brown R C D. Org Lett. 2003;5:3403–3406. doi: 10.1021/ol035065w. PubMed DOI

Guérin D, Gaumont A C, Dez I, Mauduit M, Couve-Bonnaire S, Pannecoucke X. ACS Catal. 2014;4:2374–2378. doi: 10.1021/cs500559p. DOI

Trnka T M, Day M W, Grubbs R H. Angew Chem, Int Ed. 2001;40:3441–3444. doi: 10.1002/1521-3773(20010917)40:18<3441::AID-ANIE3441>3.0.CO;2-7. PubMed DOI

Macnaughtan M L, Johnson M J A, Kampf J W. Organometallics. 2007;26:780–782. doi: 10.1021/om061082o. DOI

Macnaughtan M L, Gary J B, Gerlach D L, Johnson M J A, Kampf J W. Organometallics. 2009;28:2880–2887. doi: 10.1021/om800463n. DOI

Elsheikh M Y, Bonnet P, inventors. Process for the Manufacture of Hydrofluoroolefins via Metathesis. 2009/003085. WO Patent. 2008 Dec 31;

Takahira Y, Morizawa Y. J Am Chem Soc. 2015;137:7031–7034. doi: 10.1021/jacs.5b03342. PubMed DOI

Fomine S, Vargas Ortega J, Tlenkopatchev M A. J Organomet Chem. 2006;691:3343–3348. doi: 10.1016/j.jorganchem.2006.04.021. DOI

Fomine S, Tlenkopatchev M A. Appl Catal, A. 2009;355:148–155. doi: 10.1016/j.apcata.2008.12.011. DOI

Stewart I C, Keitz B K, Kuhn K M, Thomas R M, Grubbs R H. J Am Chem Soc. 2010;132:8534–8535. doi: 10.1021/ja1029045. PubMed DOI PMC

Kingsbury J S, Hoveyda A H. J Am Chem Soc. 2005;127:4510–4517. doi: 10.1021/ja042668+. PubMed DOI

Vorfalt T, Wannowius K J, Thiel V, Plenio H. Chem – Eur J. 2010;16:12312–12315. doi: 10.1002/chem.201001832. PubMed DOI

Bates J M, Lummis J A M, Bailey G A, Fogg D E. ACS Catal. 2014;4:2387–2394. doi: 10.1021/cs500539m. DOI

Straub B F. Angew Chem, Int Ed. 2005;44:5974–5978. doi: 10.1002/anie.200501114. PubMed DOI

Gaussian 09. Wallingford, CT, U.S.A.: Gaussian, Inc.; 2009.

Eichkorn K, Treutler O, Öhm H, Häser M, Ahlrichs R. Chem Phys Lett. 1995;240:283–290. doi: 10.1016/0009-2614(95)00621-A. DOI

Zhao Y, Truhlar D G. Theor Chem Acc. 2008;120:215–241. doi: 10.1007/s00214-007-0310-x. DOI

Weigend F, Ahlrichs R. Phys Chem Chem Phys. 2005;7:3297–3305. doi: 10.1039/B508541A. PubMed DOI

Weigend F. Phys Chem Chem Phys. 2006;8:1057–1065. doi: 10.1039/B515623H. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...