Entecavir Interacts with Influx Transporters hOAT1, hCNT2, hCNT3, but Not with hOCT2: The Potential for Renal Transporter-Mediated Cytotoxicity and Drug-Drug Interactions

. 2015 ; 6 () : 304. [epub] 20160105

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid26779022

Entecavir (ETV) is one of the most potent agents for the treatment of the hepatitis B viral infection. The drug is principally eliminated by the kidney. The goal of this study was to investigate the potential of ETV to interact in vitro with the renal SLC transporters hOAT1, hOCT2, hCNT2 and hCNT3. Potential drug-drug interactions of ETV at the renal transporters with antiviral drugs known to be excreted by the kidney (adefovir, tenofovir, cidofovir) as well as transporter-dependent cytotoxicity were also examined. Interactions with the selected transporters along with cytotoxicity were studied in several transiently transfected cellular models using specific substrates and inhibitors. ETV was found to be both a substrate and inhibitor of hOAT1 (IC50 = 175.3 μM), hCNT2 (IC50 = 241.9 μM) and hCNT3 (IC50 = 278.4 μM) transporters, although it interacted with the transporters with relatively low affinities. ETV inhibited the cellular uptake of adefovir, tenofovir, and cidofovir by hOAT1; however, effective inhibition was shown at ETV concentrations exceeding therapeutic levels. In comparison with adefovir, tenofovir, and cidofovir, ETV displayed no transporter-mediated cytotoxicity in cells transfected with hOAT1, hCNT2, and hCNT3. No significant interaction of ETV with hOCT2 was detected. The study demonstrates interactions of ETV with several human renal transporters. For the first time, an interaction of ETV with the hCNTs was proved. We show that the potency of ETV to cause nephrotoxicity and/or clinically significant drug-drug interactions related to the tested transporters is considerably lower than that of adefovir, tenofovir, and cidofovir.

Zobrazit více v PubMed

Bifano M., Yan J. H., Smith R. A., Zhang D., Grasela D. M., LaCreta F. (2007). Absence of a pharmacokinetic interaction between entecavir and adefovir. J. Clin. Pharmacol. 47 1327–1334. 10.1177/0091270007304780 PubMed DOI

Burckhardt B. C., Burckhardt G. (2003). Transport of organic anions across the basolateral membrane of proximal tubule cells. Rev. Physiol. Biochem. Pharmacol. 146 95–158. 10.1007/s10254-002-0003-8 PubMed DOI

Cano-Soldado P., Pastor-Anglada M. (2012). Transporters that translocate nucleosides and structural similar drugs: structural requirements for substrate recognition. Med. Res. Rev. 32 428–457. 10.1002/med.20221 PubMed DOI

Chae H. B., Kim M. J., Seo E. G., Choi Y. H., Lee H. S., Han J. H., et al. (2012). High efficacy of adefovir and entecavir combination therapy in patients with nucleoside-refractory hepatitis B. Korean J. Hepatol. 18 75–83. 10.3350/kjhep.2012.18.1.75 PubMed DOI PMC

Cihlar T., Laflamme G., Fisher R., Carey A. C., Vela J. E., Mackman R., et al. (2009). Novel nucleotide human immunodeficiency virus reverse transcriptase inhibitor GS-9148 with a low nephrotoxic potential: characterization of renal transport and accumulation. Antimicrob. Agents Chemother. 53 150–156. 10.1128/AAC.01183-08 PubMed DOI PMC

Cihlar T., Lin D. C., Pritchard J. B., Fuller M. D., Mendel D. B., Sweet D. H. (1999). The antiviral nucleotide analogs cidofovir and adefovir are novel substrates for human and rat renal organic anion transporter 1. Mol. Pharmacol. 56 570–580. PubMed

Cundy K. C. (1999). Clinical pharmacokinetics of the antiviral nucleotide analogues cidofovir and adefovir. Clin. Pharmacokinet. 36 127–143. 10.2165/00003088-199936020-00004 PubMed DOI

Delahunty T., Bushman L., Fletcher C. V. (2006). Sensitive assay for determining plasma tenofovir concentrations by LC/MS/MS. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 830 6–12. 10.1016/j.jchromb.2005.10.015 PubMed DOI

El-Sheikh A. A., Masereeuw R., Russel F. M. (2008). Mechanisms of renal anionic drug transport. Eur. J. Pharmacol. 585 245–255. 10.1016/j.ejphar.2008.02.085 PubMed DOI

Errasti-Murugarren E., Molina-Arcas M., Casado F. J., Pastor-Anglada M. (2010). The human concentrative nucleoside transporter-3 C602R variant shows impaired sorting to lipid rafts and altered specificity for nucleoside-derived drugs. Mol. Pharmacol. 78 157–165. 10.1124/mol.110.063552 PubMed DOI

Gray J. H., Owen R. P., Giacomini K. M. (2004). The concentrative nucleoside transporter family, SLC28. Pflugers. Arch. 447 728–734. 10.1007/s00424-003-1107-y PubMed DOI

Ho E. S., Lin D. C., Mendel D. B., Cihlar T. (2000). Cytotoxicity of antiviral nucleotides adefovir and cidofovir is induced by the expression of human renal organic anion transporter 1. J. Am. Soc. Nephrol. 11 383–393. PubMed

Izzedine H., Launay-Vacher V., Deray G. (2005). Renal tubular transporters and antiviral drugs: an update. AIDS 19 455–462. 10.1097/01.aids.0000162333.35686.4c PubMed DOI

Jiménez-Pérez M., Sáez-Gómez A. B., Mongil Poce L., Lozano-Rey J. M., de la Cruz-Lombardo J., Rodrigo-López J. M. (2010). Efficacy and safety of entecavir and/or tenofovir for prophylaxis and treatment of hepatitis B recurrence post-liver transplant. Transplant. Proc. 42 3167–3168. 10.1016/j.transproceed.2010.05.127 PubMed DOI

Kearney B. P., Ramanathan S., Cheng A. K., Ebrahimi R., Shah J. (2005). Systemic and renal pharmacokinetics of adefovir and tenofovir upon coadministration. J. Clin. Pharmacol. 4 935–940. 10.1177/0091270005278949 PubMed DOI

King K. M., Damaraju V. L., Vickers M. F., Yao S. Y., Lang T., Tackaberry T. E., et al. (2006). A comparison of the transportability, and its role in cytotoxicity of clofarabine, cladribine, and fludarabine by recombinant human nucleoside transporters produced in three model expression systems. Mol. Pharmacol. 69 346–353. PubMed

Klaassen C. D., Aleksunes L. M. (2010). Xenobiotics, bile acid, and cholesterol transporters: function and regulation. Pharmacol. Rev. 62 1–96. 10.1124/pr.109.002014 PubMed DOI PMC

Koepsell H., Endou H. (2004). The SLC22 drug transporter family. Pflugers. Arch. 447 666–676. 10.1007/s00424-003-1089-9 PubMed DOI

Lang T. T., Selner M., Young J. D., Cass C. E. (2001). Acquisition of human concentrative nucleoside transporter 2 (hcnt2) activity by gene transfer confers sensitivity to fluoropyrimidine nucleosides in drug-resistant leukemia cells. Mol. Pharmacol. 60 1143–1152. PubMed

Liaw Y. F., Raptopoulou-Gigi M., Cheinquer H., Sarin S. K., Tanwandee T., Leung N., et al. (2011). Efficacy and safety of entecavir versus adefovir in chronic hepatitis B patients with hepatic decompensation: a randomized, open-label study. Hepatology 54 91–100. 10.1002/hep.24361 PubMed DOI

Mandikova J., Volkova M., Pavek P., Cesnek M., Janeba Z., Kubicek V., et al. (2013). Interactions with selected drug renal transporters and transporter-mediated cytotoxicity in antiviral agents from the group of acyclic nucleoside phosphonates. Toxicology 311 135–146. 10.1016/j.tox.2013.07.004 PubMed DOI

Mangravite L. M., Badagnani I., Giacomini K. M. (2003). Nucleoside transporters in the disposition and targeting of nucleoside analogs in the kidney. Eur. J. Pharmacol. 479 269–281. 10.1016/j.ejphar.2003.08.076 PubMed DOI

Matthews S. J. (2006). Entecavir for the treatment of chronic hepatitis B virus infection. Clin. Ther. 28 184–203. 10.1016/j.clinthera.2006.02.012 PubMed DOI

Minuesa G., Huber-Ruano I., Pastor-Anglada M., Koepsell H., Clotet B., Martinez-Picado J. (2011). Drug uptake transporters in antiretroviral therapy. Pharmacol. Ther. 132 268–279. 10.1016/j.pharmthera.2011.06.007 PubMed DOI

Molina-Arcas M., Pastor-Anglada M. (2010). Role of nucleoside transporters in nucleoside-derived drug sensitivity. Nucleosides Nucleotides Nucleic Acids 29 335–346. 10.1080/15257771003729823 PubMed DOI

Nishimura M., Naito S. (2005). Tissue-specific mRNA expression profiles of human ATP-binding cassette and solute carrier transporter superfamilies. Drug Metab. Pharmacokinet. 20 452–477. 10.2133/dmpk.20.452 PubMed DOI

Razonable R. R. (2011). Antiviral drugs for viruses other than human immunodeficiency virus. Mayo Clin. Proc. 86 1009–1026. 10.4065/mcp.2011.0309 PubMed DOI PMC

Ritzel M. W., Ng A. M., Yao S. Y., Graham K., Loewen S. K., Smith K. M., et al. (2001). Molecular identification and characterization of novel human and mouse concentrative Na+-nucleoside cotransporter proteins (hCNT3 and mCNT3) broadly selective for purine and pyrimidine nucleosides (system cib). J. Biol. Chem. 276 2914–2927. 10.1074/jbc.M007746200 PubMed DOI

Rodríguez-Mulero S., Errasti-Murugarren E., Ballarín J., Felipe A., Doucet A., Casado F. J., et al. (2005). Expression of concentrative nucleoside transporters SLC28 (CNT1, CNT2, and CNT3) along the rat nephron: effect of diabetes. Kidney Int. 68 665–672. 10.1111/j.1523-1755.2005.00444.x PubMed DOI

Scott L. J., Keating G. M. (2009). Entecavir: a review of its use in chronic hepatitis B. Drugs 69 1003–1033. 10.2165/00003495-200969080-00005 PubMed DOI

Sheng Y. J., Liu J. Y., Tong S. W., Hu H. D., Zhang D. Z., Hu P., et al. (2011). Lamivudine plus adefovir combination therapy versus entecavir monotherapy for lamivudine-resistant chronic hepatitis B: a systematic review and meta-analysis. Virol. J. 8 393 10.1186/1743-422X-8-393 PubMed DOI PMC

Uwai Y., Ida H., Tsuji Y., Katsura T., Inui K. I. (2007). Renal transport of adefovir, cidofovir, and tenofovir by SLC22A family members (hOAT1, hOAT3, and hOCT2). Pharm. Res. 24 811–815. 10.1007/s11095-006-9196-x PubMed DOI

Xu Q., Wang C., Meng Q., Liu Q., Sun H., Peng J., et al. (2013). OAT1 and OAT3: targets of drug-drug interaction between entecavir and JBP485. Eur. J. Pharm. Sci. 48 650–657. 10.1016/j.ejps.2012.12.024 PubMed DOI

Yamamoto T., Kuniki K., Takekuma Y., Hirano T., Iseki K., Sugawara M. (2006). Ribavirin uptake by cultured human choriocarcinoma (BeWo) cells and Xenopus laevis oocytes expressing recombinant plasma membrane human nucleoside transporters. Eur. J. Pharmacol. 557 1–8. 10.1016/j.ejphar.2006.10.062 PubMed DOI

Yan J. H., Bifano M., Olsen S., Smith R. A., Zhang D., Grasela D. M., et al. (2006). Entecavir pharmacokinetics, safety, and tolerability after multiple ascending doses in healthy subjects. J. Clin. Pharmacol. 46 1250–1258. 10.1177/0091270006293304 PubMed DOI

Yanxiao C., Ruijuan X., Jin Y., Lei C., Qian W., Xuefen Y., et al. (2011). Organic anion and cation transporters are possibly involved in renal excretion of entecavir in rats. Life Sci. 89 1–6. 10.1016/j.lfs.2011.03.018 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace