(177)Lu-labelled macrocyclic bisphosphonates for targeting bone metastasis in cancer treatment

. 2016 Dec ; 6 (1) : 5. [epub] 20160116

Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid26780082
Odkazy

PubMed 26780082
PubMed Central PMC4715021
DOI 10.1186/s13550-016-0161-3
PII: 10.1186/s13550-016-0161-3
Knihovny.cz E-zdroje

BACKGROUND: Metastatic bone lesion is a common syndrome of many cancer diseases in an advanced state. The major symptom is severe pain, spinal cord compression, and pathological fracture, associated with an obvious morbidity. Common treatments including systemic application of bisphosphonate drugs aim on pain reduction and on improving the quality of life of the patient. Particularly, patients with multiple metastatic lesions benefit from bone-targeting therapeutic radiopharmaceuticals. Agents utilizing beta-emitting radionuclides in routine clinical praxis are, for example, [(89)Sr]SrCl2 and [(153)Sm]Sm-EDTMP. No-carrier-added (n.c.a.) (177)Lu is remarkably suitable for an application in this scope. METHODS: Five 1,4,7,10-tetraazacyclododecane N,N',N'',N''-tetra-acetic acid (DOTA)- and DO2A-based bisphosphonates, including monomeric and dimeric structures and one 1,4,7-triazacyclononane-1,4-diacetic acid (NO2A) derivative, were synthesized and labelled with n.c.a. (177)Lu. Radio-TLC and high-performance liquid chromatography (HPLC) methods were successfully established for determining radiochemical yields and for quality control. Their binding to hydroxyapatite was measured in vitro. Ex vivo biodistribution experiments and dynamic in vivo single photon computed tomography (SPECT)/CT measurements were performed in healthy rats for 5 min and 1 h periods. Data on %ID/g or standard uptake value (SUV) for femur, blood, and soft-tissue organs were analyzed and compared with [(177)Lu]citrate. RESULTS: Radiolabelling yields for [(177)Lu]Lu-DOTA and [(177)Lu]Lu-NO2A monomeric bisphosphonate complexes were >98 % within 15 min. The dimeric macrocyclic bisphosphonates showed a decelerated labelling kinetics, reaching a plateau after 30 min of 60 to 90 % radiolabelling yields. All (177)Lu-bisphosphonate complexes showed exclusive accumulation in the skeleton. Blood clearance and renal elimination were fast. SUV data (all for 1 h p.i.) in the femur ranged from 3.34 to 5.67. The bone/blood ratios were between 3.6 and 135.6, correspondingly. (177)Lu-bisphosphonate dimers showed a slightly higher bone accumulation (SUVfemur = 4.48 ± 0.38 for [(177)Lu]Lu-DO2A(P(BP))2; SUVfemur = 5.41 ± 0.46 for [(177)Lu]Lu-DOTA(M(BP))2) but a slower blood clearance (SUVblood = 1.25 ± 0.09 for [(177)Lu]Lu-DO2A(P(BP))2; SUVblood = 1.43 ± 0.32 for [(177)Lu]Lu-DOTA(M(BP))2). CONCLUSIONS: Lu-complexes of macrocyclic bisphosphonates might become options for the therapy of skeletal metastases in the near future, since they show high uptake in bone together with a very low soft-tissue accumulation.

Zobrazit více v PubMed

Sartor O, Hoskin P, Bruland OS. Targeted radio-nuclide therapy of skeletal metastases. Cancer Treat Rev. 2013;39:18–26. doi: 10.1016/j.ctrv.2012.03.006. PubMed DOI

Kutzner J, Grimm W, Hahn K. Palliative radiotherapy with Strontium-89 in case of extended formation of skeleton metastases. Struct Bond (Berlin) 1978;154:317–22. PubMed

Zenda S, Nakagami Y, Toshima M, Arahira S, Kawashima M, Matsumoto Y, et al. Strontium-89 (Sr-89) chloride in the treatment of various cancer patients with multiple bone metastases. Int J Clin Oncol. 2013;19(4):739–43. doi: 10.1007/s10147-013-0597-7. PubMed DOI

Williams MH, Hamilton JG, Johnston ME, Asing CW, Durbin PW. The metabolism of the lanthanons in the rat. II. Time studies of the tissue deposition of intravenously administered radioisotopes. USAEC Report. 1956;12(J.G. Hamilton):171.

O’Mara RE, McAfee JG, Subramanian G. Rare earth nuclides as potential agents for skeletal imaging. J Nucl Med. 1968;10:49–51. PubMed

Lutetium-177: handling precautions, 2010, Perkin-Elmer Inc. www.perkinelmer.com.

Tomassetti P, Falconi M, Delle Fave G, Cacciari G, Tamburrino D, Pantuzo F, et al. Radiolabelled somatostatin analogue treatment in gastroenteropancreatic neuroendocrine tumours: factors associated with response and suggestions for therapeutic sequence. EJMMI. 2013;40(8):1197–205. PubMed

Yuan J, Lui C, Liu X, Wang Y, Kuai D, Zhang G, et al. Efficacy and safety of 177Lu-EDTMP in bone metastatic pain palliation in breast cancer and hormone refractory prostate cancer: a phase II study. Clin Nucl Med. 2013;38(2):88–92. doi: 10.1097/RLU.0b013e318279bf4d. PubMed DOI

Chakraborty S, Das T, Unni PR, Sarma HD, Samuel G, Banerjee S, et al. 177Lu labelled polyaminophosphonates as potential agents for bone pain palliation. Nucl Med Comm. 2002;23:67–74. doi: 10.1097/00006231-200201000-00011. PubMed DOI

F. K. Kalman, R. Kiraly, E. Brücher, Stability constants and dissociation rates of the EDTMP complexes of Samarium(III) and Yttrium(III), Eur J Inorg Chem; 2008;30:4719–4727

Beyer BJ, Offord R, Künzi G, Aleksandrova Y, Ravn U, Jahn S, et al. The influence of EDTMP-concentration on the biodistribution of radio-lanthanides and 225-Ac in tumor-bearing mice. Nucl Med & Biol. 1997;24:367–372. doi: 10.1016/S0969-8051(97)80001-7. PubMed DOI

Byegård J, Skarnemark G, Skalberg M. The stability of some metal EDTADTPA and DOTA complexes: application as tracers in groundwater studies. J Radioanal & Nucl Chem. 1999;241:281–290. doi: 10.1007/BF02347463. DOI

Smentek L. Lanthanides caged by the organic chelates; structural properties. J Phys Condens Matter. 2011;23:143202. doi: 10.1088/0953-8984/23/14/143202. PubMed DOI

Chakrabotry S, Das T, Sarma HD, Venkatesh M, Banerjee S. Comparative studies of 177Lu–EDTMP and 177Lu–DOTMP as potential agents for palliative radiotherapy of bone metastasis. Appl Radiat Isot. 2008;66:1196–1205. doi: 10.1016/j.apradiso.2008.02.061. PubMed DOI

Kletter K, Dudczak R, Kluger R, Viernstein H, Ettlinger DE, Eidherr H, et al. Pre vivo, ex vivo and in vivo evaluations of [68Ga]-EDTMP. Nucl Med & Biol. 2007;34:391–397. doi: 10.1016/j.nucmedbio.2007.03.002. PubMed DOI

Fellner M, Riss P, Loktionova N, Zhernosekov K, Thews O, Geraldes CFGC, et al. Comparison of different phosphorus-containing ligands complexing 68Ga for PET-imaging of bone metabolism. Radiochim Acta. 2011;99:43–51. doi: 10.1524/ract.2011.1791. DOI

Fellner M, Biesalski B, Bausbacher N, Kubicek V, Hermann P, Rösch F, et al. 68Ga-BPAMD: PET-imaging of bone metastases with a generator based positron emitter. Nucl Med & Biol. 2012;39:993–999. doi: 10.1016/j.nucmedbio.2012.04.007. PubMed DOI

Vitha T, Kubicek V, Hermann P, Elst LV, Mueller RN, Kolar ZI, et al. Lanthanide(III) complexes of bis(phosphonate) monoamide analogues of DOTA: bone-seeking agents for imaging and therapy. J Med Chem. 2008;51:677–683. doi: 10.1021/jm7012776. PubMed DOI

Lin JH. Bisphosphonates: a review of their pharmacokinetic properties. Bone. 1996;18(2):75–85. doi: 10.1016/8756-3282(95)00445-9. PubMed DOI

Fellner M, Baum RP, Kubicek V, Herrman P, Lukes I, Prasad V, et al. PET/CT imaging of osteoblastic bone metastases with 68Ga-bisphosphonates: first human study. EJNMMI. 2010;37:834. PubMed

Holub J, Meckel M, Kubicek V, Rösch F, Hermann P. Gallium(III) complexes of NOTA-bis(phosphonate) conjugates as radiotracers for bone imaging. CMMI. 2015;10(2):122–34. PubMed

Meckel M, Fellner M, Thieme N, Bergmann R, Kubicek V, Rösch F. In vivo comparison of DOTA based 68Ga-labelled bisphosphonates for bone imaging in non-tumour models. Nucl Med & Biol. 2013;40:823–830. doi: 10.1016/j.nucmedbio.2013.04.012. PubMed DOI

Ogawa K, Takai K, Kanbara H, Kiwada T, Kitamura Y, Shiba K, et al. Preparation and evaluation of a radiogallium complex-conjugated bisphosphonate as a bone scintigraphy agent. Nucl Med & Biol. 2011;38:631–636. doi: 10.1016/j.nucmedbio.2010.12.004. PubMed DOI

Vitha T, Kubicek V, Hermann P, Kolar ZI, Wolterbeek HT, Peters JA, et al. Complexes of DOTA-bisphosphonate conjugates: probes for determination of adsorption capacity and affinity constants of hydroxyapatite. Langmuir. 2008;24:1952–1958. doi: 10.1021/la702753j. PubMed DOI

Rösch F, Brockmann J, Misiak R, Novgorodov AF, Lebedev NA. Radiochemical separation of no-carrier-added 177Lu as produced via the 176Yb(n,γ)177Yb®177Lu process. Appl Radiat Isot. 2000;53:421–425. doi: 10.1016/S0969-8043(99)00284-5. PubMed DOI

Riss PJ, Burchardt C, Rösch F. A methodical 68Ga‐labelling study of DO2A‐(butyl‐L‐tyrosine) 2 with cation‐exchanger post-processed 68Ga: practical aspects of radiolabelling. CMMI. 2011;6:492–498. PubMed

Kubicek V, Rudovsky J, Kotek J, Hermann P, Elst LV, Mueller RN, et al. A bisphosphonate monoamide analogue of DOTA: a potential agent for bone targeting. J Am Chem Soc. 2005;127:16477–16485. doi: 10.1021/ja054905u. PubMed DOI

Peters JA, Lukes I, Mueller RN, Elst LV, Hermann P, Kotek J, et al. Gd(III) complex of a monophosphinate-bis(phosphonate) DOTA analogue with a high relaxivity; lanthanide(III) complexes for imaging and radiotherapy of calcified tissues. Dalton Trans. 2009;17:3204–3214. PubMed

Sontag W. Long-term behavior of 239Pu, 241Am and 233U in different bones of one-year-old rats: macrodistribution and macrodosimetry. Human Toxicol. 1984;3:69–483. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...