Mechanism of action and efficacy of RX-111, a thieno[2,3-c]pyridine derivative and small molecule inhibitor of protein interaction with glycosaminoglycans (SMIGs), in delayed-type hypersensitivity, TNBS-induced colitis and experimental autoimmune encephalomyelitis
Language English Country Switzerland Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
26794621
DOI
10.1007/s00011-016-0915-4
PII: 10.1007/s00011-016-0915-4
Knihovny.cz E-resources
- Keywords
- Autoimmune disease, Glycosaminoglycan, Heparan sulfate, Heparin binding protein, Inflammation, Small molecule drug,
- MeSH
- Anti-Inflammatory Agents pharmacology therapeutic use MeSH
- Myelin Basic Protein immunology MeSH
- Encephalomyelitis, Autoimmune, Experimental drug therapy immunology MeSH
- Human Umbilical Vein Endothelial Cells drug effects immunology MeSH
- Heparitin Sulfate metabolism MeSH
- Colitis chemically induced drug therapy immunology MeSH
- Rats MeSH
- Trinitrobenzenesulfonic Acid MeSH
- Humans MeSH
- Mice, Inbred BALB C MeSH
- Cell Line, Tumor MeSH
- Oxazolone MeSH
- Rats, Inbred Lew MeSH
- Hypersensitivity, Delayed chemically induced drug therapy immunology MeSH
- Pyridines pharmacology therapeutic use MeSH
- Leukocyte Rolling drug effects MeSH
- T-Lymphocytes drug effects immunology MeSH
- Thiophenes pharmacology therapeutic use MeSH
- Treatment Outcome MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Humans MeSH
- Male MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Anti-Inflammatory Agents MeSH
- Myelin Basic Protein MeSH
- Heparitin Sulfate MeSH
- Trinitrobenzenesulfonic Acid MeSH
- Oxazolone MeSH
- Pyridines MeSH
- RX-111 MeSH Browser
- Thiophenes MeSH
OBJECTIVE AND DESIGN: Elucidate the mechanism of action of the small molecule inhibitor of protein binding to glycosaminoglycans, RX-111 and assay its anti-inflammatory activity in animal models of inflammatory disease. MATERIALS: The glycosaminoglycan, heparin, was used in the mechanism of action study of RX-111. Human T lymphocytes and umbilical vein endothelial cells were used to assay the in vitro activity of RX-111. Mouse and rat models of disease were used to assay the anti-inflammatory activity of RX-111 in vivo. METHODS: Circular dichroism and UV/Vis absorption spectroscopy were used to study the binding of RX-111 to the glycosaminoglycan, heparin. T lymphocyte rolling on endothelial cells under shear flow was used to assay RX-111 activity in vitro. Delayed-type hypersensitivity (DTH) and tri-nitrobenzene sulfonic acid (TNBS)-induced colitis in mice and experimental autoimmune encephalomyelitis (EAE) in rats were used to assay anti-inflammatory activity of RX-111 in vivo. RESULTS: RX-111 was shown to bind directly to heparin. It inhibited leukocyte rolling on endothelial cells under shear flow and reduced inflammation in the mouse model of DTH. RX-111 was efficacious in the mouse model of inflammatory bowel disease, TNBS-induced colitis and the rat model of multiple sclerosis, EAE. CONCLUSIONS: RX-111 exercises its broad spectrum anti-inflammatory activity by a singular mechanism of action, inhibition of protein binding to the cell surface GAG, heparan sulfate. RX-111 and related thieno[2,3-c]pyridine derivatives are potential therapeutics for the treatment of inflammatory and autoimmune diseases.
Department of Immunology Rappaport Institute Rappaport Faculty of Medicine Technion Haifa Israel
GISMO Therapeutics Inc A253 ASTECC UK Lexington KY 40506 USA
GYN FIV a s Záhradnícka 42 821 085 Bratislava Slovakia
Institute of Animal Physiology Slovak Academy of Sciences 04001 Kosice Slovakia
Rimonyx Pharmaceuticals Ltd Rabin Science Park 70400 Ness Ziona Israel
See more in PubMed
FEBS J. 2006 Oct;273(19):4377-89 PubMed
Cell Tissue Res. 1999 May;296(2):259-69 PubMed
J Immunol. 1991 Mar 1;146(5):1617-25 PubMed
Cell. 1991 May 31;65(5):859-73 PubMed
Scand J Immunol. 2010 Nov;72(5):396-407 PubMed
Biochim Biophys Acta. 2014 Jan;1840(1):245-54 PubMed
J Exp Med. 1976 Apr 1;143(4):870-88 PubMed
J Biol Chem. 2000 Nov 3;275(44):34818-25 PubMed
Br J Pharmacol. 2011 Oct;164(4):1079-106 PubMed
Nature. 1996 Jan 18;379(6562):266-9 PubMed
J Exp Med. 1998 Jan 19;187(2):205-16 PubMed
Blood. 2002 Jan 15;99(2):538-45 PubMed
Am J Pathol. 1996 Jun;148(6):1819-38 PubMed
J Immunol. 2005 Feb 15;174(4):2343-52 PubMed
Scand J Immunol. 2006 Aug;64(2):117-24 PubMed
Am J Pathol. 2004 May;164(5):1635-44 PubMed
Nat Immunol. 2007 Apr;8(4):409-18 PubMed
J Neuroimmunol. 1985 Dec;10(2):159-66 PubMed
J Immunol. 1998 Sep 1;161(5):2449-56 PubMed
Arteriosclerosis. 1989 Jan-Feb;9(1):21-32 PubMed
J Clin Invest. 1996 Nov 1;98(9):2076-85 PubMed
Proc Natl Acad Sci U S A. 1999 Jun 8;96(12):6896-901 PubMed
Blood. 1993 Dec 1;82(11):3253-8 PubMed
Chirality. 2015 Sep;27(9):605-12 PubMed
J Cell Biol. 1994 Feb;124(4):609-18 PubMed
Adv Immunol. 1999;72:209-53 PubMed
Gut. 1999 Feb;44(2):186-95 PubMed
Immunity. 2001 Jul;15(1):115-26 PubMed
Gastroenterology. 2014 Nov;147(5):981-9 PubMed
J Immunol. 2013 Jul 1;191(1):448-55 PubMed
Immunity. 2010 Nov 24;33(5):817-29 PubMed
Am J Gastroenterol. 2007 Jul;102(7):1499-509 PubMed
Chin Med J (Engl). 2013;126(18):3439-45 PubMed
J Immunol. 1991 Oct 15;147(8):2565-73 PubMed
J Immunol. 1998 Dec 15;161(12):6638-47 PubMed
Nat Immunol. 2005 Nov;6(11):1096-104 PubMed
Nat Immunol. 2005 Nov;6(11):1105-13 PubMed
BMC Immunol. 2005 Mar 07;6:6 PubMed
Biol Pharm Bull. 2006 Dec;29(12):2343-9 PubMed
J Biol Chem. 2010 Dec 24;285(52):40864-78 PubMed
J Neuroimmunol. 2009 May 29;210(1-2):22-9 PubMed
Science. 2013 Jan 11;339(6116):166-72 PubMed
Clin Exp Immunol. 2010 Feb;159(2):159-68 PubMed
Science. 1996 Apr 5;272(5258):60-6 PubMed
Nat Rev Gastroenterol Hepatol. 2011 Oct 04;8(11):646-56 PubMed
Biosci Rep. 2012 Feb;32(1):71-81 PubMed
Nat Rev Immunol. 2012 Nov;12(11):762-73 PubMed