Nonclassical light from a large number of independent single-photon emitters

. 2016 Jan 27 ; 6 () : 19760. [epub] 20160127

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid26813774

Nonclassical quantum effects gradually reach domains of physics of large systems previously considered as purely classical. We derive a hierarchy of operational criteria suitable for a reliable detection of nonclassicality of light from an arbitrarily large ensemble of independent single-photon emitters. We show, that such large ensemble can always emit nonclassical light without any phase reference and under realistic experimental conditions including incoherent background noise. The nonclassical light from the large ensemble of the emitters can be witnessed much better than light coming from a single or a few emitters.

Zobrazit více v PubMed

Peres A. Quantum Theory: Concepts and Methods, Kluwer, Dordrecht (1993).

Schrödinger E. Die gegenwertige Situation in der Quantenmechanik Naturwissenschaften 23, 807 (1935).

Haroche S. Nobel Lecture: Controlling photons in a box and exploring the quantum to classical boundary. Rev. Mod. Phys. 85, 1083 (2013). PubMed

Wineland D. J. Nobel Lecture: Superposition, entanglement, and raising Schrödingers cat. Rev. Mod. Phys. 85, 1103 (2013). PubMed

Kanseri B., Iskhakov T., Rytikov G., Chekhova M. & Leuchs G. Multi-photon nonclassical correlations in entangled squeezed vacuum states arXiv:1301.4471.

Monroe C., Meekhof D. M., King B. E. & Wineland D. J. A Schrödinger Cat Superposition State of an Atom. Science 272, 1131 (1996). PubMed

Hempel C. et al. Entanglement-enhanced detection of single-photon scattering events. Nat. Phot. 7, 630633 (2013).

Brune M. et al. Observing the Progressive Decoherence of the Meter in a Quantum Measurement. Phys. Rev. Lett. 77, 4887 (1996). PubMed

Deléglise S. et al. Reconstruction of non-classical cavity field states with snapshots of their decoherence. Nature (London) 455, 510 (2008). PubMed

Jeong H. et al. Generation of hybrid entanglement of light. Nat. Phot. 8, 564 (2014).

Morin O. et al. Remote creation of hybrid entanglement between particle-like and wave-like optical qubits. Nat. Phot. 8, 570 (2014).

Vlastakis B. et al. Deterministically encoding quantum information using 100-photon Schrödinger cat states. Science 342, 607 (2013). PubMed

McConnell R., Zhang H., Hu J., Ćuk S. & Vuletić V. Entanglement with negative Wigner function of almost 3,000 atoms heralded by one photon. Nature 519, 439 (2015). PubMed

Glauber R. J. Coherent and Incoherent States of the Radiation Field. Phys. Rev. 131, 2766 (1963).

Brida G., Bondani M., Degiovanni I. P., Genovese M., Paris M. G. A., Berchera I. R. & Schettini V. On the Discrimination Between Classical and Quantum States. Found. of Phys. 41, 305 (2011)

Vogel W. Nonclassical States: An Observable Criterion. Phys. Rev. Lett. 84, 1849 PubMed

Zurek W. H. Decoherence, einselection, and the quantum origins of the classical. Rev. Mod. Phys. 75, 715 (2003).

Ritter S. et al. An elementary quantum network of single atoms in optical cavities. Nature 484, 195 (2012). PubMed

Stute A. et al. Quantum-state transfer from an ion to a photon. Nat. Phot. 7, 219 (2013). PubMed PMC

Nowak A. K. et al. Deterministic and electrically tunable bright single-photon source. Nat. Comm. 5, 3240 (2014). PubMed PMC

Sipahigil A. et al. Indistinguishable Photons from Separated Silicon-Vacancy Centers in Diamond. Phys. Rev. Lett. 113, 113602 (2014). PubMed

Siyushev P., Stein G., Wrachtrup J. & Gerhardt I. Molecular photons interfaced with alkali atoms. Nature 509, 66 (2014). PubMed

Filip R. & Mišta L. Jr. Detecting Quantum States with a Positive Wigner Function beyond Mixtures of Gaussian States. Phys. Rev. Lett. 106, 200401 (2011). PubMed

Ježek M. et al. Experimental Test of the Quantum Non-Gaussian Character of a Heralded Single-Photon State. Phys. Rev. Lett. 107, 213602 (2011). PubMed

Lachman L. & Filip R. Robustness of quantum nonclassicality and non-Gaussianity of single-photon states in attenuating channels. Phys. Rev. A 88, 063841 (2013).

Straka I. et al. Quantum non-Gaussian Depth of Single-Photon States. Phys. Rev. Lett. 113, 223603 (2014). PubMed

Kimble H. J., Dagenais M. & Mandel L. Photon Antibunching in Resonance Fluorescence. Phys. Rev. Lett. 39, 691 (1977).

Grangier P., Roger G. & Aspect A. Experimental Evidence for a Photon Anticorrelation Effect on a Beam Splitter: A New Light on Single-Photon Interferences. Europhysics Letters 1, 173 (1986).

Filip R. & Lachman L. Hierarchy of feasible nonclassicality criteria for sources of photons. Phys. Rev. A 88, 043827 (2013).

Albert M., Dantan A. & Drewsen M. Cavity electromagnetically induced transparency and all-optical switching using ion Coulomb crystals. Nat. Phot. 5, 633–636 (2011).

Drewsen M., Brodersen C., Hornekar L., Hangst J. S. & Schifffer J. P. Large Ion Crystals in a Linear Paul Trap. Phys. Rev. Lett. 81, 2878 (1998).

Block M., Drakoudis A., Leuthner H., Seibert P. & Werth G. Crystalline ion structures in a paul trap. J. Phys. B: At. Mol. Opt. Phys. 33, 375–382 (2000).

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...