• This record comes from PubMed

Diamagnetic Raman Optical Activity of Chlorine, Bromine, and Iodine Gases

. 2016 Mar 01 ; 55 (10) : 3504-8. [epub] 20160204

Status PubMed-not-MEDLINE Language English Country Germany Media print-electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Magnetic Raman optical activity of gases provides unique information about their electric and magnetic properties. Magnetic Raman optical activity has recently been observed in a paramagnetic gas (Angew. Chem. Int. Ed. 2012, 51, 11058; Angew. Chem. 2012, 124, 11220). In diamagnetic molecules, it has been considered too weak to be measurable. However, in chlorine, bromine and iodine vapors, we could detect a significant signal as well. Zeeman splitting of electronic ground-state energy levels cannot rationalize the observed circular intensity difference (CID) values of about 10(-4). These are explicable by participation of paramagnetic excited electronic states. Then a simple model including one electronic excited state provides reasonable spectral intensities. The results suggest that this kind of scattering by diamagnetic molecules is a general event observable under resonance conditions. The phenomenon sheds new light on the role of excited states in the Raman scattering, and may be used to probe molecular geometry and electronic structure.

References provided by Crossref.org

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...