Arginine deiminase pathway genes and arginine degradation variability in Oenococcus oeni strains
Language English Country United States Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
26873388
DOI
10.1007/s12223-015-0416-9
PII: 10.1007/s12223-015-0416-9
Knihovny.cz E-resources
- MeSH
- Arginine metabolism MeSH
- Bacterial Proteins genetics metabolism MeSH
- Hydrolases genetics metabolism MeSH
- Oenococcus classification enzymology genetics metabolism MeSH
- Operon MeSH
- Wine microbiology MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Arginine MeSH
- arginine deiminase MeSH Browser
- Bacterial Proteins MeSH
- Hydrolases MeSH
Trace amounts of the carcinogenic ethyl carbamate can appear in wine as a result of a reaction between ethanol and citrulline, which is produced from arginine degradation by some bacteria used in winemaking. In this study, arginine deiminase (ADI) pathway genes were evaluated in 44 Oenococcus oeni strains from wines originating from several locations in order to establish the relationship between the ability of a strain to degrade arginine and the presence of related genes. To detect the presence of arc genes of the ADI pathway in O. oeni, pairs of primers were designed to amplify arcA, arcB, arcC and arcD1 sequences. All strains contained these four genes. The same primers were used to confirm the organization of these genes in an arcABCD1 operon. Nevertheless, considerable variability in the ability to degrade arginine among these O. oeni strains was observed. Therefore, despite the presence of the arc genes in all strains, the expression patterns of individual genes must be strain dependent and influenced by the different wine conditions. Additionally, the presence of arc genes was also determined in the 57 sequenced strains of O. oeni available in GenBank, and the complete operon was found in 83% of strains derived from wine. The other strains were found to lack the arcB, arcC and arcD genes, but all contained sequences homologous to arcA, and some of them had also ADI activity.
See more in PubMed
Int J Food Microbiol. 1999 Nov 15;52(3):155-61 PubMed
J Bacteriol. 1998 Aug;180(16):4154-9 PubMed
Appl Environ Microbiol. 1995 Jan;61(1):310-6 PubMed
J Appl Microbiol. 2004;96(1):185-93 PubMed
Antonie Van Leeuwenhoek. 1999 Jul-Nov;76(1-4):317-31 PubMed
Int Microbiol. 2011 Dec;14 (4):225-33 PubMed
Gene. 2002 Nov 13;301(1-2):61-6 PubMed
Food Microbiol. 2013 Feb;33(1):107-13 PubMed
J Appl Microbiol. 2006 Aug;101(2):406-11 PubMed
Genome Res. 2001 May;11(5):731-53 PubMed
Appl Environ Microbiol. 2009 Apr;75(7):2079-90 PubMed
FEMS Microbiol Rev. 2005 Aug;29(3):411-33 PubMed
J Appl Microbiol. 2003;95(2):344-53 PubMed
Mol Phylogenet Evol. 2002 Dec;25(3):429-44 PubMed
Appl Environ Microbiol. 2001 Apr;67(4):1657-62 PubMed
World J Microbiol Biotechnol. 2012 Mar;28(3):1003-12 PubMed
FEMS Microbiol Lett. 2009 Jan;290(1):98-104 PubMed
Res Microbiol. 2001 Sep;152(7):653-61 PubMed
Appl Microbiol Biotechnol. 2006 May;70(5):590-7 PubMed
J Mol Biol. 1990 Oct 5;215(3):403-10 PubMed
J Agric Food Chem. 2009 Mar 11;57(5):1841-7 PubMed
Appl Environ Microbiol. 2004 Mar;70(3):1321-7 PubMed
J Appl Microbiol. 2003;94(4):738-46 PubMed
J Appl Microbiol. 2000 Sep;89(3):526-31 PubMed
Trends Biochem Sci. 1993 Nov;18(11):448-50 PubMed
Food Chem Toxicol. 1990 Mar;28(3):205-11 PubMed
J Bacteriol. 1998 Dec;180(24):6468-75 PubMed
Int J Food Microbiol. 2009 Nov 15;135(3):216-22 PubMed
J Agric Food Chem. 1976 Mar-Apr;24(2):323-8 PubMed
J Agric Food Chem. 2007 Feb 7;55(3):608-13 PubMed
Nucleic Acids Res. 1997 Sep 1;25(17):3389-402 PubMed
FEMS Microbiol Rev. 2005 Aug;29(3):465-75 PubMed
FEMS Microbiol Lett. 2000 Feb 1;183(1):31-5 PubMed
Microbiol Rev. 1986 Sep;50(3):314-52 PubMed