Forecasting SPEI and SPI Drought Indices Using the Integrated Artificial Neural Networks
Language English Country United States Media print-electronic
Document type Journal Article
PubMed
26880875
PubMed Central
PMC4736223
DOI
10.1155/2016/3868519
Knihovny.cz E-resources
- MeSH
- Water Cycle MeSH
- Humans MeSH
- Environmental Monitoring methods MeSH
- Neural Networks, Computer * MeSH
- Droughts * MeSH
- Forecasting MeSH
- Models, Theoretical * MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
The presented paper compares forecast of drought indices based on two different models of artificial neural networks. The first model is based on feedforward multilayer perceptron, sANN, and the second one is the integrated neural network model, hANN. The analyzed drought indices are the standardized precipitation index (SPI) and the standardized precipitation evaporation index (SPEI) and were derived for the period of 1948-2002 on two US catchments. The meteorological and hydrological data were obtained from MOPEX experiment. The training of both neural network models was made by the adaptive version of differential evolution, JADE. The comparison of models was based on six model performance measures. The results of drought indices forecast, explained by the values of four model performance indices, show that the integrated neural network model was superior to the feedforward multilayer perceptron with one hidden layer of neurons.
See more in PubMed
Dai A. Drought under global warming: a review. Wiley Interdisciplinary Reviews: Climate Change. 2011;2:45–65.
Cook E. R., Meko D. M., Stahle D. W., Cleaveland M. K. Drought reconstructions for the continental United States. Journal of Climate. 1999;12(4):1145–1163. doi: 10.1175/1520-0442(1999)012<1145:DRFTCU>2.0.CO;2. DOI
Dai A. Increasing drought under global warming in observations and models. Nature Climate Change. 2013;3(1):52–58. doi: 10.1038/nclimate1633. DOI
Mishra A. K., Singh V. P. Drought modeling—a review. Journal of Hydrology. 2011;403(1-2):157–175. doi: 10.1016/j.jhydrol.2011.03.049. DOI
Ntale H. K., Gan T. Y. Drought indices and their application to East Africa. International Journal of Climatology. 2003;23(11):1335–1357. doi: 10.1002/joc.931. DOI
Morid S., Smakhtin V., Moghaddasi M. Comparison of seven meteorological indices for drought monitoring in Iran. International Journal of Climatology. 2006;26(7):971–985. doi: 10.1002/joc.1264. DOI
Wu H., Hayes M. J., Weiss A., Hu Q. An evaluation of the standardized precipitation index, the China-Z index and the statistical Z-score. International Journal of Climatology. 2001;21(6):745–758. doi: 10.1002/joc.658. DOI
Keyantash J., Dracup J. A. The quantification of drought: an evaluation of drought indices. Bulletin of the American Meteorological Society. 2002;83(8):1167–1180. doi: 10.1175/1520-0477(2002)08360;1191:tqodae62;2.3.co;2. DOI
Haslinger K., Koffler D., Schöner W., Laaha G. Exploring the link between meteorological drought and streamflow: effects of climate-catchment interaction. Water Resources Research. 2014;50(3):2468–2487. doi: 10.1002/2013wr015051. DOI
Morid S., Smakhtin V., Bagherzadeh K. Drought forecasting using artificial neural networks and time series of drought indices. International Journal of Climatology. 2007;27(15):2103–2111. doi: 10.1002/joc.1498. DOI
Belayneh A., Adamowski J., Khalil B., Ozga-Zielinski B. Long-term SPI drought forecasting in the Awash River Basin in Ethiopia using wavelet neural networks and wavelet support vector regression models. Journal of Hydrology. 2014;508:418–429. doi: 10.1016/j.jhydrol.2013.10.052. DOI
Ochoa-Rivera J. C. Prospecting droughts with stochastic artificial neural networks. Journal of Hydrology. 2008;352(1-2):174–180. doi: 10.1016/j.jhydrol.2008.01.006. DOI
Mishra A. K., Desai V. R. Drought forecasting using feed-forward recursive neural network. Ecological Modelling. 2006;198(1-2):127–138. doi: 10.1016/j.ecolmodel.2006.04.017. DOI
Hornik K., Stinchcombe M., White H. Multilayer feedforward networks are universal approximators. Neural Networks. 1989;2(5):359–366. doi: 10.1016/0893-6080(89)90020-8. DOI
Rumelhart D. E., Hinton G. E., Williams R. J. Learning representations by back-propagating errors. Nature. 1986;323(6088):533–536. doi: 10.1038/323533a0. DOI
Huo Z., Feng S., Kang S., Huang G., Wang F., Guo P. Integrated neural networks for monthly river flow estimation in arid inland basin of Northwest China. Journal of Hydrology. 2012;420-421:159–170. doi: 10.1016/j.jhydrol.2011.11.054. DOI
Pektaş A. O., Cigizoglu H. K. ANN hybrid model versus ARIMA and ARIMAX models of runoff coefficient. Journal of Hydrology. 2013;500:21–36. doi: 10.1016/j.jhydrol.2013.07.020. DOI
Nourani V., Hosseini Baghanam A., Adamowski J., Kisi O. Applications of hybrid wavelet-artificial Intelligence models in hydrology: a review. Journal of Hydrology. 2014;514:358–377. doi: 10.1016/j.jhydrol.2014.03.057. DOI
Wang W., Gelder P. H. A. J. M. V., Vrijling J. K., Ma J. Forecasting daily streamflow using hybrid ANN models. Journal of Hydrology. 2006;324(1–4):383–399. doi: 10.1016/j.jhydrol.2005.09.032. DOI
Shamseldin A. Y., O'Connor K. M. A non-linear neural network technique for updating of river flow forecasts. Hydrology and Earth System Sciences. 2001;5(4):577–598. doi: 10.5194/hess-5-577-2001. DOI
Hayes M. J., Svoboda M. D., Wilhite D. A., Vanyarkho O. V. Monitoring the 1996 drought using the standardized precipitation index. Bulletin of the American Meteorological Society. 1999;80(3):429–438. doi: 10.1175/1520-0477(1999)08060;0429:mtduts62;2.0.co;2. DOI
Guttman N. B. Comparing the palmer drought index and the standardized precipitation index. Journal of the American Water Resources Association. 1998;34(1):113–121. doi: 10.1111/j.1752-1688.1998.tb05964.x. DOI
Cancelliere A., Mauro G. D., Bonaccorso B., Rossi G. Drought forecasting using the standardized precipitation index. Water Resources Management. 2007;21(5):801–819. doi: 10.1007/s11269-006-9062-y. DOI
Vicente-Serrano S. M., Beguería S., López-Moreno J. I. A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index. Journal of Climate. 2010;23(7):1696–1718. doi: 10.1175/2009jcli2909.1. DOI
Beguería S., Vicente-Serrano S. M., Reig F., Latorre B. Standardized precipitation evapotranspiration index (SPEI) revisited: parameter fitting, evapotranspiration models, tools, datasets and drought monitoring. International Journal of Climatology. 2014;34(10):3001–3023. doi: 10.1002/joc.3887. DOI
Beguería S., Vicente-Serrano S. M. SPEI: Calculation of the Standardised Precipitation—Evapotranspiration Index. R package version 1.6.
Kim T.-W., Valdés J. B. Nonlinear model for drought forecasting based on a conjunction of wavelet transforms and neural networks. Journal of Hydrologic Engineering. 2003;8(6):319–328. doi: 10.1061/(ASCE)1084-0699(2003)8:6(319). DOI
Bishop C. M. Neural Networks for Pattern Recognition. New York, NY, USA: Oxford University Press; 1995.
Reed R. D., Marks R. J. Neural Smithing: Supervised Learning in Feedforward Artificial Neural Networks. Cambridge, Mass, USA: MIT Press; 1998.
Gomes G. S. D. S., Ludermir T. B., Lima L. M. M. R. Comparison of new activation functions in neural network for forecasting financial time series. Neural Computing & Applications. 2011;20(3):417–439.
Maca P., Pech P., Pavlasek J. Comparing the selected transfer functions and local optimization methods for neural network flood runoff forecast. Mathematical Problems in Engineering. 2014;2014:10. doi: 10.1155/2014/782351.782351 DOI
Goswami M., O'Connor K. M., Bhattarai K. P., Shamseldin A. Y. Assessing the performance of eight real-time updating models and procedures for the Brosna River. Hydrology and Earth System Sciences. 2005;9(4):394–411. doi: 10.5194/hess-9-394-2005. DOI
Kitanidis P. K., Bras R. L. Real-time forecasting with a conceptual hydrologic model: 2. Applications and results. Water Resources Research. 1980;16(6):1034–1044. doi: 10.1029/wr016i006p01034. DOI
Dawson C. W., Abrahart R. J., See L. M. HydroTest: a web-based toolbox of evaluation metrics for the standardised assessment of hydrological forecasts. Environmental Modelling & Software. 2007;22(7):1034–1052. doi: 10.1016/j.envsoft.2006.06.008. DOI
Dawson C. W., Abrahart R. J., See L. M. HydroTest: further development of a web resource for the standardised assessment of hydrological models. Environmental Modelling and Software. 2010;25(11):1481–1482. doi: 10.1016/j.envsoft.2009.01.001. DOI
Piotrowski A. P., Napiorkowski J. J. Optimizing neural networks for river flow forecasting—evolutionary computation methods versus the levenberg-marquardt approach. Journal of Hydrology. 2011;407(1–4):12–27. doi: 10.1016/j.jhydrol.2011.06.019. DOI
Zhang J., Sanderson A. Jade: adaptive differential evolution with optional external archive. IEEE Transactions on Evolutionary Computation. 2009;13:945–958.
Storn R., Price K. Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization. 1997;11(4):341–359. doi: 10.1023/a:1008202821328. DOI
Price K. V., Storn R. M., Lampinen J. A. Differential Evolution—A Practical Approach to Global Optimization. Berlin, Germany: Springer; 2006. (Natural Computing).
Das S., Suganthan P. N. Differential evolution: a survey of the state-of-the-art. IEEE Transactions on Evolutionary Computation. 2011;15(1):4–31. doi: 10.1109/tevc.2010.2059031. DOI
Duan Q., Schaake J., Andréassian V., et al. Model Parameter Estimation Experiment (MOPEX): an overview of science strategy and major results from the second and third workshops. Journal of Hydrology. 2006;320(1-2):3–17. doi: 10.1016/j.jhydrol.2005.07.031. DOI
Schaake J., Duan Q., Andréassian V., Franks S., Hall A., Leavesley G. The model parameter estimation experiment (MOPEX) Journal of Hydrology. 2006;320(1-2):1–2. doi: 10.1016/j.jhydrol.2005.07.054. DOI
Ao T., Ishidaira H., Takeuchi K., et al. Relating BTOPMC model parameters to physical features of MOPEX basins. Journal of Hydrology. 2006;320(1-2):84–102. doi: 10.1016/j.jhydrol.2005.07.006. DOI
Ye A., Duan Q., Yuan X., Wood E. F., Schaake J. Hydrologic post-processing of MOPEX streamflow simulations. Journal of Hydrology. 2014;508:147–156. doi: 10.1016/j.jhydrol.2013.10.055. DOI
Chen J., Brissette F. P., Chaumont D., Braun M. Performance and uncertainty evaluation of empirical downscaling methods in quantifying the climate change impacts on hydrology over two North American river basins. Journal of Hydrology. 2013;479:200–214. doi: 10.1016/j.jhydrol.2012.11.062. DOI
Troch P. A., Martinez G. F., Pauwels V. R. N., et al. Climate and vegetation water use efficiency at catchment scales. Hydrological Processes. 2009;23(16):2409–2414. doi: 10.1002/hyp.7358. DOI
Huang M., Hou Z., Leung L. R., et al. Uncertainty analysis of runoff simulations and parameter identifiability in the community land model: evidence from MOPEX basins. Journal of Hydrometeorology. 2013;14(6):1754–1772. doi: 10.1175/jhm-d-12-0138.1. DOI
Mutlu E., Chaubey I., Hexmoor H., Bajwa S. G. Comparison of artificial neural network models for hydrologic predictions at multiple gauging stations in an agricultural watershed. Hydrological Processes. 2008;22(26):5097–5106. doi: 10.1002/hyp.7136. DOI
May R. J., Maier H. R., Dandy G. C., Fernando T. M. K. G. Non-linear variable selection for artificial neural networks using partial mutual information. Environmental Modelling & Software. 2008;23(10-11):1312–1326. doi: 10.1016/j.envsoft.2008.03.007. DOI
May R. J., Dandy G. C., Maier H. R., Nixon J. B. Application of partial mutual information variable selection to ANN forecasting of water quality in water distribution systems. Environmental Modelling & Software. 2008;23(10-11):1289–1299. doi: 10.1016/j.envsoft.2008.03.008. DOI
Bacanli U. G., Firat M., Dikbas F. Adaptive Neuro-Fuzzy inference system for drought forecasting. Stochastic Environmental Research and Risk Assessment. 2009;23(8):1143–1154. doi: 10.1007/s00477-008-0288-5. DOI