-
Something wrong with this record ?
Hyperactive delta isoform of PI3 kinase enables long-distance regeneration of adult rat corticospinal tract
K. Karova, Z. Polcanova, L. Knight, S. Suchankova, B. Nieuwenhuis, R. Holota, V. Herynek, L. Machova Urdzikova, R. Turecek, JC. Kwok, J. van den Herik, J. Verhaagen, R. Eva, JW. Fawcett, P. Jendelova
Language English Country United States
Document type Journal Article
- MeSH
- Axons metabolism physiology MeSH
- Dependovirus genetics MeSH
- Class I Phosphatidylinositol 3-Kinases metabolism genetics MeSH
- Phosphatidylinositol 3-Kinases metabolism MeSH
- Genetic Vectors genetics MeSH
- Rats MeSH
- Disease Models, Animal MeSH
- Neurons metabolism MeSH
- Recovery of Function MeSH
- Spinal Cord Injuries * metabolism therapy genetics MeSH
- Pyramidal Tracts * metabolism MeSH
- Nerve Regeneration * MeSH
- Signal Transduction MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
Neurons in the CNS lose regenerative potential with maturity, leading to minimal corticospinal tract (CST) axon regrowth after spinal cord injury (SCI). In young rodents, knockdown of PTEN, which antagonizes PI3K signaling by hydrolyzing PIP3, promotes axon regeneration following SCI. However, this effect diminishes in adults, potentially due to lower PI3K activation leading to reduced PIP3. This study explores whether increased PIP3 generation can promote long-distance regeneration in adults. We used a hyperactive PI3K, PI3Kδ (PIK3CD), to boost PIP3 levels in mature cortical neurons and assessed CST regeneration after SCI. Adult rats received AAV1-PIK3CD and AAV1-eGFP, or AAV1-eGFP alone, in the sensorimotor cortex concurrent with a C4 dorsal SCI. Transduced neurons showed increased pS6 levels, indicating elevated PI3K/Akt/mTOR signaling. CST regeneration, confirmed with retrograde tracing, was evaluated up to 16 weeks post injury. At 12 weeks, ∼100 axons were present at lesion sites, doubling to 200 by 16 weeks, with regeneration indices of 0.1 and 0.2, respectively. Behavioral tests showed significant improvements in paw reaching, grip strength, and ladder-rung walking in PIK3CD-treated rats, corroborated by electrophysiological recordings of cord dorsum potentials and distal flexor muscle electromyography. Thus, PI3Kδ upregulation in adult cortical neurons enhances axonal regeneration and functional recovery post SCI.
Netherlands Institute for Neuroscience Meibergdreef 47 1105 BA Amsterdam the Netherlands
School of Biomedical Sciences University of Leeds Leeds LS2 9JT UK
References provided by Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc25009939
- 003
- CZ-PrNML
- 005
- 20250429135425.0
- 007
- ta
- 008
- 250415s2025 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1016/j.ymthe.2024.12.040 $2 doi
- 035 __
- $a (PubMed)39748509
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Karova, Kristyna $u Institute of Experimental Medicine CAS, Department of Neuroregeneration, Videnska 1083, 142 20 Prague, Czech Republic. Electronic address: kristyna.karova@iem.cas.cz
- 245 10
- $a Hyperactive delta isoform of PI3 kinase enables long-distance regeneration of adult rat corticospinal tract / $c K. Karova, Z. Polcanova, L. Knight, S. Suchankova, B. Nieuwenhuis, R. Holota, V. Herynek, L. Machova Urdzikova, R. Turecek, JC. Kwok, J. van den Herik, J. Verhaagen, R. Eva, JW. Fawcett, P. Jendelova
- 520 9_
- $a Neurons in the CNS lose regenerative potential with maturity, leading to minimal corticospinal tract (CST) axon regrowth after spinal cord injury (SCI). In young rodents, knockdown of PTEN, which antagonizes PI3K signaling by hydrolyzing PIP3, promotes axon regeneration following SCI. However, this effect diminishes in adults, potentially due to lower PI3K activation leading to reduced PIP3. This study explores whether increased PIP3 generation can promote long-distance regeneration in adults. We used a hyperactive PI3K, PI3Kδ (PIK3CD), to boost PIP3 levels in mature cortical neurons and assessed CST regeneration after SCI. Adult rats received AAV1-PIK3CD and AAV1-eGFP, or AAV1-eGFP alone, in the sensorimotor cortex concurrent with a C4 dorsal SCI. Transduced neurons showed increased pS6 levels, indicating elevated PI3K/Akt/mTOR signaling. CST regeneration, confirmed with retrograde tracing, was evaluated up to 16 weeks post injury. At 12 weeks, ∼100 axons were present at lesion sites, doubling to 200 by 16 weeks, with regeneration indices of 0.1 and 0.2, respectively. Behavioral tests showed significant improvements in paw reaching, grip strength, and ladder-rung walking in PIK3CD-treated rats, corroborated by electrophysiological recordings of cord dorsum potentials and distal flexor muscle electromyography. Thus, PI3Kδ upregulation in adult cortical neurons enhances axonal regeneration and functional recovery post SCI.
- 650 _2
- $a zvířata $7 D000818
- 650 12
- $a poranění míchy $x metabolismus $x terapie $x genetika $7 D013119
- 650 _2
- $a krysa rodu Rattus $7 D051381
- 650 12
- $a pyramidové dráhy $x metabolismus $7 D011712
- 650 12
- $a regenerace nervu $7 D009416
- 650 _2
- $a signální transdukce $7 D015398
- 650 _2
- $a fosfatidylinositol-3-kinasy třídy I $x metabolismus $x genetika $7 D058534
- 650 _2
- $a axony $x metabolismus $x fyziologie $7 D001369
- 650 _2
- $a fosfatidylinositol-3-kinasy $x metabolismus $7 D019869
- 650 _2
- $a modely nemocí na zvířatech $7 D004195
- 650 _2
- $a Dependovirus $x genetika $7 D000229
- 650 _2
- $a neurony $x metabolismus $7 D009474
- 650 _2
- $a ženské pohlaví $7 D005260
- 650 _2
- $a obnova funkce $7 D020127
- 650 _2
- $a genetické vektory $x genetika $7 D005822
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Polcanova, Zuzana $u Institute of Experimental Medicine CAS, Department of Neuroregeneration, Videnska 1083, 142 20 Prague, Czech Republic
- 700 1_
- $a Knight, Lydia $u Institute of Experimental Medicine CAS, Department of Neuroregeneration, Videnska 1083, 142 20 Prague, Czech Republic
- 700 1_
- $a Suchankova, Stepanka $u Institute of Experimental Medicine CAS, Department of Auditory Neuroscience, Videnska 1083, 142 20 Prague, Czech Republic
- 700 1_
- $a Nieuwenhuis, Bart $u John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, UK
- 700 1_
- $a Holota, Radovan $u Institute of Experimental Medicine CAS, Department of Neuroregeneration, Videnska 1083, 142 20 Prague, Czech Republic; Institute of Biology and Ecology, Faculty of Science, P.J. Safarik University in Kosice, Srobarova 2, Kosice 041 54, Slovak Republic
- 700 1_
- $a Herynek, Vit $u Center for Advanced Preclinical Imaging (CAPI), First Faculty of Medicine, Charles University, Salmovska 3, 120 00 Prague, Czech Republic
- 700 1_
- $a Machova Urdzikova, Lucia $u Institute of Experimental Medicine CAS, Department of Neuroregeneration, Videnska 1083, 142 20 Prague, Czech Republic
- 700 1_
- $a Turecek, Rostislav $u Institute of Experimental Medicine CAS, Department of Auditory Neuroscience, Videnska 1083, 142 20 Prague, Czech Republic
- 700 1_
- $a Kwok, Jessica C $u School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK; Institute of Experimental Medicine CAS, Centre for Reconstructive Neuroscience, Videnska 1083, 14220 Prague, Czech Republic
- 700 1_
- $a van den Herik, Joelle $u Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA Amsterdam, the Netherlands
- 700 1_
- $a Verhaagen, Joost $u Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA Amsterdam, the Netherlands
- 700 1_
- $a Eva, Richard $u Kings College London, Wolfson Sensory Pain and Regeneration Centre (SPaRC), Guy's Campus, London Bridge, London SE1 1UL, UK
- 700 1_
- $a Fawcett, James W $u John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, UK; Institute of Experimental Medicine CAS, Centre for Reconstructive Neuroscience, Videnska 1083, 14220 Prague, Czech Republic
- 700 1_
- $a Jendelova, Pavla $u Institute of Experimental Medicine CAS, Department of Neuroregeneration, Videnska 1083, 142 20 Prague, Czech Republic. Electronic address: pavla.jendelova@iem.cas.cz
- 773 0_
- $w MED00189556 $t Molecular therapy $x 1525-0024 $g Roč. 33, č. 2 (2025), s. 752-770
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/39748509 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y - $z 0
- 990 __
- $a 20250415 $b ABA008
- 991 __
- $a 20250429135420 $b ABA008
- 999 __
- $a ok $b bmc $g 2311362 $s 1247020
- BAS __
- $a 3
- BAS __
- $a PreBMC-MEDLINE
- BMC __
- $a 2025 $b 33 $c 2 $d 752-770 $e 20250101 $i 1525-0024 $m Molecular therapy $n Mol Ther $x MED00189556
- LZP __
- $a Pubmed-20250415