Arginine side chain interactions and the role of arginine as a gating charge carrier in voltage sensitive ion channels
Language English Country England, Great Britain Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
Grant support
BB/I014063/1
Biotechnology and Biological Sciences Research Council - United Kingdom
PubMed
26899474
PubMed Central
PMC4761985
DOI
10.1038/srep21759
PII: srep21759
Knihovny.cz E-resources
- MeSH
- Arginine chemistry MeSH
- Databases, Protein MeSH
- ERG1 Potassium Channel chemistry MeSH
- Ion Channel Gating MeSH
- Guanidine chemistry MeSH
- Hydrophobic and Hydrophilic Interactions MeSH
- Humans MeSH
- Lysine chemistry MeSH
- Protein Isoforms chemistry MeSH
- Amino Acid Sequence MeSH
- Molecular Dynamics Simulation * MeSH
- Static Electricity MeSH
- Structural Homology, Protein MeSH
- Water chemistry MeSH
- Hydrogen Bonding MeSH
- Structure-Activity Relationship MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Arginine MeSH
- ERG1 Potassium Channel MeSH
- Guanidine MeSH
- KCNH2 protein, human MeSH Browser
- Lysine MeSH
- Protein Isoforms MeSH
- Water MeSH
Gating charges in voltage-sensing domains (VSD) of voltage-sensitive ion channels and enzymes are carried on arginine side chains rather than lysine. This arginine preference may result from the unique hydration properties of the side chain guanidinium group which facilitates its movement through a hydrophobic plug that seals the center of the VSD, as suggested by molecular dynamics simulations. To test for side chain interactions implicit in this model we inspected interactions of the side chains of arginine and lysine with each of the 19 non-glycine amino acids in proteins in the protein data bank. The arginine guanidinium interacts with non-polar aromatic and aliphatic side chains above and below the guanidinium plane while hydrogen bonding with polar side chains is restricted to in-plane positions. In contrast, non-polar side chains interact largely with the aliphatic part of the lysine side chain. The hydration properties of arginine and lysine are strongly reflected in their respective interactions with non-polar and polar side chains as observed in protein structures and in molecular dynamics simulations, and likely underlie the preference for arginine as a mobile charge carrier in VSD.
See more in PubMed
Harms M. J. et al. A buried lysine that titrates with a normal pK(a): Role of conformational flexibility at the protein-water interface as a determinant of pK(a)values. Protein Sci. 17, 833–845 (2008). PubMed PMC
Fitch C. A., Platzer G., Okon M., Garcia-Moreno B. & McIntosh L. P. Arginine: Its pK(a) value revisited. Protein Sci. 24, 752–761 (2015). PubMed PMC
Harms M. J., Schlessman J. L., Sue G. R. & Garcia-Moreno B. Arginine residues at internal positions in a protein are always charged. Proc. Natl. Acad. Sci. USA 108, 18954–18959 (2011). PubMed PMC
Li L. B., Vorobyov I. & Allen T. W. The Different Interactions of Lysine and Arginine Side Chains with Lipid Membranes. J. Phys. Chem. B 117, 11906–11920 (2013). PubMed PMC
Catterall W. A. Ion Channel Voltage Sensors: Structure, Function, and Pathophysiology. Neuron 67, 915–928 (2010). PubMed PMC
Tao X., Lee A., Limapichat W., Dougherty D. A. & MacKinnon R. A Gating Charge Transfer Center in Voltage Sensors. Science 328, 67–73 (2010). PubMed PMC
Campos F. V., Chanda B., Roux B. & Bezanilla F. Two atomic constraints unambiguously position the S4 segment relative to S1 and S2 segments in the closed state of Shaker K channel. Proc. Natl. Acad. Sci. USA 104, 7904–7909 (2007). PubMed PMC
Li Q. F. et al. Structural mechanism of voltage-dependent gating in an isolated voltage-sensing domain. Nat. Struct. Mol. Biol. 21, 244–252 (2014). PubMed PMC
Aggarwal S. K. & MacKinnon R. Contribution of the S4 segment to gating charge in the Shaker K+ channel. Neuron 16, 1169–1177 (1996). PubMed
Ahern C. A. & Horn R. Focused electric field across the voltage sensor of potassium channels. Neuron 48, 25–29 (2005). PubMed
Pless S. A. et al. Asymmetric functional contributions of acidic and aromatic side chains in sodium channel voltage-sensor domains. J. Gen. Physiol. 143, 645–656 (2014). PubMed PMC
Colenso C. K., Cao Y., Sessions R. B., Hancox J. C. & Dempsey C. E. Voltage Sensor Gating Charge Transfer in a hERG Potassium Channel Model. Biophys. J. 107, L25–L28 (2014). PubMed PMC
Mason P. E., Neilson G. W., Dempsey C. E., Barnes A. C. & Cruickshank J. M. The hydration structure of guanidinium and thiocyanate ions: Implications for protein stability in aqueous solution. Proc. Natl. Acad. Sci. USA 100, 4557–4561 (2003). PubMed PMC
Schwaiger C. S., Bjelkmar P., Hess B. & Lindahl E. 3(10)-Helix Conformation Facilitates the Transition of a Voltage Sensor S4 Segment toward the Down State. Biophys. J. 100, 1446–1454 (2011). PubMed PMC
Jensen M. O. et al. Mechanism of Voltage Gating in Potassium Channels. Science 336, 229–233 (2012). PubMed
Delemotte L., Tarek M., Klein M. L., Amaral C. & Treptow W. Intermediate states of the Kv1.2 voltage sensor from atomistic molecular dynamics simulations. Proc. Natl. Acad. Sci. USA 108, 6109–6114 (2011). PubMed PMC
Freites J. A., Schow E. V., White S. H. & Tobias D. J. Microscopic Origin of Gating Current Fluctuations in a Potassium Channel Voltage Sensor. Biophys. J. 102, A44–A46 (2012). PubMed PMC
Thanki N., Thornton J. M. & Goodfellow J. M. Distributions of Water around Amino-Acid Residues in Proteins. J. Mol. Biol. 202, 637–657 (1988). PubMed
Gallivan J. P. & Dougherty D. A. Cation-pi interactions in structural biology. Proc. Natl. Acad. Sci. USA 96, 9459–9464 (1999). PubMed PMC
Singh J. & Thornton J. M. Atlas of Protein Side Chain Interactions, (IRL Press, Oxford, 1992).
Flocco M. M. & Mowbray S. L. Planar Stacking Interactions of Arginine and Aromatic Side-Chains in Proteins. J. Mol. Biol. 235, 709–717 (1994). PubMed
Donald J. E., Kulp D. W. & DeGrado W. F. Salt bridges: Geometrically specific, designable interactions. Proteins 79, 898–915 (2011). PubMed PMC
Takeshita K. et al. X-ray crystal structure of voltage-gated proton channel. Nat. Struct. Mol. Biol. 21, 352–U170 (2014). PubMed
Imai Y. N., Inoue Y. & Yamamoto Y. Propensities of polar and aromatic amino acids in noncanonical interactions: Nonbonded contacts analysis of protein-ligand complexes in crystal structures. J. Med. Chem. 50, 1189–1196 (2007). PubMed
Mason P. E., Dempsey C. E., Neilson G. W., Kline S. R. & Brady J. W. Preferential Interactions of Guanidinum Ions with Aromatic Groups over Aliphatic Groups. J. Am. Chem. Soc. 131, 16689–16696 (2009). PubMed PMC
Chakrabarti P. & Bhattacharyya R. Geometry of nonbonded interactions involving planar groups in proteins. Prog. Biophys. Mol. Biol. 95, 83–137 (2007). PubMed
Dempsey C. E., Piggot T. J. & Mason P. E. Dissecting contributions to the denaturant sensitivities of proteins. Biochemistry 44, 775–781 (2005). PubMed
Lim W. K., Rosgen J. & Englander S. W. Urea, but not guanidinium, destabilizes proteins by forming hydrogen bonds to the peptide group. Proc. Natl. Acad. Sci. USA 106, 2595–2600 (2009). PubMed PMC
Reif M. M., Hunenberger P. H. & Oostenbrink C. New Interaction Parameters for Charged Amino Acid Side Chains in the GROMOS Force Field. J. Chem. Theory Comput. 8, 3705–3723 (2012). PubMed
Debiec K. T., Gronenborn A. M. & Chong L. T. Evaluating the Strength of Salt Bridges: A Comparison of Current Biomolecular Force Fields. J. Phys. Chem. B 118, 6561–6569 (2014). PubMed PMC
Lacroix J. J. & Bezanilla F. Control of a final gating charge transition by a hydrophobic residue in the S2 segment of a K+ channel voltage sensor. Proc. Natl. Acad. Sci. USA 108, 6444–6449 (2011). PubMed PMC
Cheng Y. M. et al. Functional interactions of voltage sensor charges with an S2 hydrophobic plug in hERG channels. J. Gen. Physiol. 142, 289–303 (2013). PubMed PMC
Lacroix J. J., Hyde H. C., Campos F. V. & Bezanilla F. Moving gating charges through the gating pore in a Kv channel voltage sensor. Proc. Natl. Acad. Sci. USA 111, E1950–E1959 (2014). PubMed PMC
El-Din T. M. G., Scheuer T. & Catterall W. A. Tracking S4 movement by gating pore currents in the bacterial sodium channel NaChBac. J. Gen. Physiol. 144, 147–157 (2014). PubMed PMC
Long S. B., Tao X., Campbell E. B. & MacKinnon R. Atomic structure of a voltage-dependent K+ channel in a lipid membrane-like environment. Nature 450, 376–382 (2007). PubMed
Tombola F., Pathak M. M. & Isacoff E. Y. Voltage-sensing arginines in a potassium channel permeate and occlude cation-selective pores. Neuron 45, 379–388 (2005). PubMed
Miceli F. et al. The voltage-sensing domain of K(v)7.2 channels as a molecular target for epilepsy-causing mutations and anticonvulsants. Front. Pharmacol. 2, 2 (2011). PubMed PMC
Mason P. E., Brady J. W., Neilson G. W. & Dempsey C. E. The interaction of guanidinium ions with a model peptide. Biophys. J. 93, L4–L6 (2007). PubMed PMC
Wang G. L. & Dunbrack R. L. PISCES: a protein sequence culling server. Bioinformatics 19, 1589–1591 (2003). PubMed
Berman H. M. et al. The Protein Data Bank. Nucleic Acids Res. 28, 235–242 (2000). PubMed PMC
van der Walt S., Colbert S. C. & Varoquaux G. The NumPy Array: A Structure for Efficient Numerical Computation. Comput. Sci. Eng. 13, 22–30 (2011).
The PyMOL Molecular Graphics System, Version 1.4.1 Schrödinger, LLC.
Colenso C. K., Sessions R. B., Zhang Y. H., Hancox J. C. & Dempsey C. E. Interactions between Voltage Sensor and Pore Domains in a hERG K+ Channel Model from Molecular Simulations and the Effects of a Voltage Sensor Mutation. J. Chem. Inf. Mod. 53, 1358–1370 (2013). PubMed
Self-association of a highly charged arginine-rich cell-penetrating peptide