MECP2 mutations in Czech patients with Rett syndrome and Rett-like phenotypes: novel mutations, genotype-phenotype correlations and validation of high-resolution melting analysis for mutation scanning
Language English Country England, Great Britain Media print-electronic
Document type Journal Article
PubMed
26984561
DOI
10.1038/jhg.2016.19
PII: jhg201619
Knihovny.cz E-resources
- MeSH
- Alleles MeSH
- Child MeSH
- Exons MeSH
- Phenotype * MeSH
- Genetic Predisposition to Disease MeSH
- Genetic Association Studies * MeSH
- Genotype * MeSH
- X Chromosome Inactivation MeSH
- Polymorphism, Single Nucleotide MeSH
- Humans MeSH
- Adolescent MeSH
- Mutation * MeSH
- DNA Mutational Analysis MeSH
- Child, Preschool MeSH
- Methyl-CpG-Binding Protein 2 genetics MeSH
- Rett Syndrome diagnosis genetics MeSH
- Nucleic Acid Amplification Techniques MeSH
- Check Tag
- Child MeSH
- Humans MeSH
- Adolescent MeSH
- Male MeSH
- Child, Preschool MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Czech Republic MeSH
- Names of Substances
- Methyl-CpG-Binding Protein 2 MeSH
Rett syndrome (RTT) is an X-linked neurodevelopmental disorder characterized by developmental regression with loss of motor, communication and social skills, onset of stereotypic hand movements and often seizures. RTT is primarily caused by de novo mutations in the methyl-CpG-binding protein 2 gene (MECP2). We established a high-resolution melting (HRM) technique for mutation scanning of the MECP2 gene and performed analyses in Czech patients with RTT, autism spectrum conditions and intellectual disability with Rett-like features. In the cases with confirmed MECP2 mutations, we determined X-chromosome inactivation (XCI), examined the relationships between genotype and clinical severity and evaluated the modifying influence of XCI. Our results demonstrate that HRM analysis is a reliable method for the detection of point mutations, small deletions and duplications in the MECP2 gene. We identified 29 pathogenic mutations in 75 girls, including four novel mutations: c.155_1189del1035;909_932inv;insC, c.573delC, c.857_858dupAA and c.1163_1200del38. Skewed XCI (ratio >75%) was found in 19.3% of the girls, but no gross divergence in clinical severity was observed. Our findings confirm a high mutation frequency in classic RTT (92%) and a correlation between the MECP2 mutation type and clinical severity. We also demonstrate limitations of XCI in explaining all of the phenotypic differences in RTT.
See more in PubMed
Brain Dev. 2001 Dec;23 Suppl 1:S161-4 PubMed
Biosci Rep. 2011 Oct;31(5):333-43 PubMed
Blood Cells Mol Dis. 1998 Dec;24(4):439-47 PubMed
Hum Mutat. 2015 Dec;36(12):1197-204 PubMed
Neurology. 2009 Apr 7;72(14):1242-7 PubMed
Res Dev Disabil. 2014 Nov;35(11):2976-86 PubMed
Nucleic Acids Res. 2004 Mar 19;32(5):1818-23 PubMed
Eur J Hum Genet. 2013 Mar;21(3):266-73 PubMed
Am J Med Genet A. 2015 Sep;167A(9):2017-25 PubMed
Front Cell Neurosci. 2015 Jul 14;9:266 PubMed
Hum Genet. 2014 Jan;133(1):1-9 PubMed
Hum Mutat. 2001 Aug;18(2):132-40 PubMed
Gene. 2013 Feb 15;515(1):78-83 PubMed
Cell Rep. 2015 Sep 22;12(11):1887-901 PubMed
Science. 2008 May 30;320(5880):1224-9 PubMed
Methods. 2010 Apr;50(4):250-61 PubMed
J Med Genet. 2010 Jan;47(1):49-53 PubMed
Nucleic Acids Res. 1988 Feb 11;16(3):1215 PubMed
Am J Hum Genet. 2008 Jul;83(1):89-93 PubMed
Nat Genet. 2004 Apr;36(4):339-41 PubMed
Am J Hum Genet. 2004 Dec;75(6):1149-54 PubMed
J Med Genet. 2003 May;40(5):e52 PubMed
Nat Neurosci. 2013 Jul;16(7):898-902 PubMed
Nature. 2013 Jul 18;499(7458):341-5 PubMed
J Med Genet. 2014 Nov;51(11):724-36 PubMed
Am J Med Genet A. 2012 Feb;158A(2):340-50 PubMed
Ann Neurol. 2010 Dec;68(6):951-5 PubMed
J Biol Chem. 2003 Aug 22;278(34):32181-8 PubMed
Nat Genet. 1999 Oct;23(2):185-8 PubMed
Am J Hum Genet. 2004 Dec;75(6):1079-93 PubMed
Am J Hum Genet. 1999 Dec;65(6):1520-9 PubMed
Neurology. 2008 Apr 15;70(16):1313-21 PubMed
Ann Neurol. 2010 Dec;68(6):944-50 PubMed
J Child Neurol. 2010 May;25(5):546-50 PubMed
Am J Hum Genet. 2000 Dec;67(6):1428-36 PubMed
Blood Cells Mol Dis. 2015 Feb;54(2):210-6 PubMed
Hum Mutat. 2003 May;21(5):466-72 PubMed
Neurology. 2008 Mar 11;70(11):868-75 PubMed
Am J Hum Genet. 1992 Dec;51(6):1229-39 PubMed
J Hum Genet. 2007;52(4):342-8 PubMed
J Pediatr. 2006 Mar;148(3):347-52 PubMed
Cell. 2012 Dec 21;151(7):1417-30 PubMed
Clin Chem. 2003 Jun;49(6 Pt 1):853-60 PubMed
J Med Genet. 2014 Mar;51(3):152-8 PubMed
Eur J Hum Genet. 2002 Aug;10(8):487-90 PubMed
Nature. 1998 May 28;393(6683):386-9 PubMed
J Hum Genet. 2011 Jul;56(7):508-15 PubMed
Eur J Hum Genet. 2001 Mar;9(3):231-6 PubMed
J Child Neurol. 2007 Dec;22(12):1338-41 PubMed
Am J Med Genet A. 2004 Apr 15;126A(2):129-40 PubMed