Opposing effects of oxidative challenge and carotenoids on antioxidant status and condition-dependent sexual signalling

. 2016 Mar 22 ; 6 () : 23546. [epub] 20160322

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid27000655

Several recent hypotheses consider oxidative stress to be a primary constraint ensuring honesty of condition-dependent carotenoid-based signalling. The key testable difference between these hypotheses is the assumed importance of carotenoids for redox homeostasis, with carotenoids being either antioxidant, pro-oxidant or unimportant. We tested the role of carotenoids in redox balance and sexual signalling by exposing adult male zebra finches (Taeniopygia guttata) to oxidative challenge (diquat dibromide) and manipulating carotenoid intake. As the current controversy over the importance of carotenoids as antioxidants could stem from the hydrophilic basis of commonly-used antioxidant assays, we used the novel measure of in vivo lipophilic antioxidant capacity. Oxidative challenge reduced beak pigmentation but elicited an increase in antioxidant capacity suggesting resource reallocation from signalling to redox homeostasis. Carotenoids counteracted the effect of oxidative challenge on lipophilic (but not hydrophilic) antioxidant capacity, thereby supporting carotenoid antioxidant function in vivo. This is inconsistent with hypotheses proposing that signalling honesty is maintained through either ROS-induced carotenoid degradation or the pro-oxidant effect of high levels of carotenoid-cleavage products acting as a physiological handicap. Our data further suggest that assessment of lipophilic antioxidant capacity is necessary to fully understand the role of redox processes in ecology and evolution.

Zobrazit více v PubMed

Folstad I. & Karter A. J. Parasites, bright males, and the immunocompetence handicap. Am. Nat. 139, 603–622 (1992).

Jones A. G. & Ratterman N. L. Mate choice and sexual selection: What have we learned since Darwin? Proc. Natl. Acad. Sci. USA 106, 10001–10008 (2009). PubMed PMC

Hill G. E. Condition‐dependent traits as signals of the functionality of vital cellular processes. Ecol. Lett. 14, 625–634 (2011). PubMed

Garratt M. & Brooks R. C. Oxidative stress and condition-dependent sexual signals: more than just seeing red. Proc. R. Soc. B-Biol. Sci. 279, 3121–3130 (2012). PubMed PMC

von Schantz T., Bensch S., Grahn M., Hasselquist D. & Wittzell H. Good genes, oxidative stress and condition-dependent sexual signals. Proc. R. Soc. B-Biol. Sci. 266, 1–12 (1999). PubMed PMC

Dowling D. K. & Simmons L. W. Reactive oxygen species as universal constraints in life-history evolution. Proc. R. Soc. B-Biol. Sci. 276, 1737–1745 (2009). PubMed PMC

Costantini D. & Møller A. P. Does immune response cause oxidative stress in birds? A meta-analysis. Comp. Biochem. Physiol. -Mol. Integr. Physiol. 153, 339–344 (2009). PubMed

Koivula M. & Eeva T. Metal-related oxidative stress in birds. Environ. Pollut. 158, 2359–2370 (2010). PubMed

El-Agamey A. et al.. Carotenoid radical chemistry and antioxidant/pro-oxidant properties. Arch. Biochem. Biophys. 430, 37–48 (2004). PubMed

Lozano G. A. Carotenoids, parasites, and sexual selection. Oikos 70, 309–311 (1994).

Olson V. A. & Owens I. P. F. Costly sexual signals: are carotenoids rare, risky or required? Trends Ecol. Evol. 13, 510–514 (1998). PubMed

Hartley R. C. & Kennedy M. W. Are carotenoids a red herring in sexual display? Trends Ecol. Evol. 19, 353–354 (2004). PubMed

Simons M. J. P., Cohen A. A. & Verhulst S. What does carotenoid-dependent coloration tell? Plasma carotenoid level signals immunocompetence and oxidative stress state in birds-a meta-analysis. PLoS One 7, e43088 (2012). PubMed PMC

Costantini D. & Møller A. P. Carotenoids are minor antioxidants for birds. Funct. Ecol. 22, 367–370 (2008).

Zahavi A. In Reproductive biology and phylogeny of birds, Part B (ed. Jamieson B. G. M.) 143–159 (Science, 2007).

Vinkler M. & Albrecht T. Carotenoid maintenance handicap and the physiology of carotenoid-based signalisation of health. Naturwissenschaften 97, 19–28 (2010). PubMed

Johnson J. D. & Hill G. E. Is carotenoid ornamentation linked to the inner mitochondria membrane potential? A hypothesis for the maintenance of signal honesty. Biochimie 95, 436–444 (2013). PubMed

Svensson P. A. & Wong B. B. M. Carotenoid-based signals in behavioural ecology: a review. Behaviour 148, 131–189 (2011).

Yeum K. J., Russell R. M., Krinsky N. I. & Aldini G. Biomarkers of antioxidant capacity in the hydrophilic and lipophilic compartments of human plasma. Arch. Biochem. Biophys. 430, 97–103 (2004). PubMed

Herborn K. A., Coffey J., Larcombe S. D., Alexander L. & Arnold K. E. Oxidative profile varies with personality in European greenfinches. J. Exp. Biol. 214, 1732–1739 (2011). PubMed

Yoshida Y., Hayakawa M., Habuchi Y., Itoh N. & Niki E. Evaluation of lipophilic antioxidant efficacy in vivo by the biomarkers hydroxyoctadecadienoic acid and isoprostane. Lipids 42, 463–472 (2007). PubMed

Yoshida Y., Umeno A. & Shichiri M. Lipid peroxidation biomarkers for evaluating oxidative stress and assessing antioxidant capacity in vivo. J. Clin. Biochem. Nutr. 52, 9–16 (2013). PubMed PMC

Burton G. W. & Ingold K. U. β-Carotene: an unusual type of lipid antioxidant. Science 224, 569–573 (1984). PubMed

Hõrak P. & Cohen A. A. How to measure oxidative stress in an ecological context: methodological and statistical issues. Funct. Ecol. 24, 960–970 (2010).

Alonso-Alvarez C. & Galván I. Free radical exposure creates paler carotenoid-based ornaments: a possible interaction in the expression of black and red traits. PLoS One 6, e19403 (2011). PubMed PMC

Slaughter M. R., Thakkar H. & O’Brien P. J. Effect of diquat on the antioxidant system and cell growth in human neuroblastoma cells. Toxicol. Appl. Pharmacol. 178, 63–70 (2002). PubMed

Drechsel D. A. & Patel M. Differential contribution of the mitochondrial respiratory chain complexes to reactive oxygen species production by redox cycling agents implicated in parkinsonism. Toxicol. Sci. 112, 427–434 (2009). PubMed PMC

Fischer L. R. & Glass J. D. Oxidative stress induced by loss of Cu,Zn-superoxide dismutase (SOD1) or superoxide-generating herbicides causes axonal degeneration in mouse DRG cultures. Acta Neuropathol. (Berl.) 119, 249–259 (2010). PubMed PMC

Costantini D. & Verhulst S. Does high antioxidant capacity indicate low oxidative stress? Funct. Ecol. 23, 506–509 (2009).

Selman C. et al.. Life-long vitamin C supplementation in combination with cold exposure does not affect oxidative damage or lifespan in mice, but decreases expression of antioxidant protection genes. Mech. Ageing Dev. 127, 897–904 (2006). PubMed

Selman C. et al.. Lifelong alpha-tocopherol supplementation increases the median life span of C57BL/6 mice in the cold but has only minor effects on oxidative damage. Rejuvenation Res. 11, 83–95 (2008). PubMed

Speakman J. R. et al.. Oxidative stress and life histories: unresolved issues and current needs. Ecol. Evol. 5, 5745–5757 (2015). PubMed PMC

Jones G. M. & Vale J. A. Mechanisms of toxicity, clinical features, and management of diquat poisoning: A review. J. Toxicol.-Clin. Toxicol. 38, 123–128 (2000). PubMed

Galano A., Vargas R. & Martinez A. Carotenoids can act as antioxidants by oxidizing the superoxide radical anion. Phys. Chem. Chem. Phys. 12, 193–200 (2010). PubMed

Alonso-Alvarez C. et al.. An experimental test of the dose-dependent effect of carotenoids and immune activation on sexual signals and antioxidant activity. Am. Nat. 164, 651–659 (2004). PubMed

Hill G. E., Inouye C. Y. & Montgomerie R. Dietary carotenoids predict plumage coloration in wild house finches. Proc. R. Soc. B-Biol. Sci. 269, 1119–1124 (2002). PubMed PMC

Hill G. Energetic constraints on expression of carotenoid-based plumage coloration. J. Avian Biol. 31, 559–566 (2000).

McGraw K., Hill G. & Parker R. The physiological costs of being colourful: nutritional control of carotenoid utilization in the American goldfinch, Carduelis tristis. Anim. Behav. 69, 653–660 (2005).

McGraw K. J. & Toomey M. B. Carotenoid accumulation in the tissues of zebra finches: predictors of integumentary pigmentation and implications for carotenoid allocation strategies. Physiol. Biochem. Zool. 83, 97–109 (2010). PubMed

Mundy N. I. et al.. Red males revealed: a cytochrome P450 gene cluster controls production of derived red ketocarotenoids in the zebra finch bill. in ESEB Congress, Lausanne (2015).

Wang X. et al.. CYP2J2-derived epoxyeicosatrienoic acids suppress endoplasmic reticulum stress in heart failure. Mol. Pharmacol. 85, 105–115 (2014). PubMed PMC

Han E.-S. et al.. The in vivo gene expression signature of oxidative stress. Physiol. Genomics 34, 112–126 (2008). PubMed PMC

Fussell K. C. et al.. Redox cycling and increased oxygen utilization contribute to diquat-induced oxidative stress and cytotoxicity in Chinese hamster ovary cells overexpressing NADPH-cytochrome P450 reductase. Free Radic. Biol. Med. 50, 874–882 (2011). PubMed PMC

Eraud C. et al.. Environmental stress affects the expression of a carotenoid-based sexual trait in male zebra finches. J. Exp. Biol. 210, 3571–3578 (2007). PubMed

Faivre B., Gregoire A., Preault M., Cezilly F. & Sorci G. Immune activation rapidly mirrored in a secondary sexual trait. Science 300, 103–103 (2003). PubMed

Isaksson C., Örnborg J., Stephensen E. & Andersson S. Plasma glutathione and carotenoid coloration as potential biomarkers of environmental stress in great tits. EcoHealth 2, 138–146 (2005).

Dauwe T. & Eens M. Melanin- and carotenoid-dependent signals of great tits (Parus major) relate differently to metal pollution. Naturwissenschaften 95, 969–973 (2008). PubMed

Isaksson C. & Andersson S. Oxidative stress does not influence carotenoid mobilization and plumage pigmentation. Proc. R. Soc. B-Biol. Sci. 275, 309–314 (2008). PubMed PMC

Giraudeau M., Chavez A., Toomey M. B. & McGraw K. J. Effects of carotenoid supplementation and oxidative challenges on physiological parameters and carotenoid-based coloration in an urbanization context. Behav. Ecol. Sociobiol. 69, 957–970 (2015).

Hõrak P., Sild E., Soomets U., Sepp T. & Kilk K. Oxidative stress and information content of black and yellow plumage coloration: an experiment with greenfinches. J. Exp. Biol. 213, 2225–2233 (2010). PubMed

Blount J. D., Metcalfe N. B., Birkhead T. R. & Surai P. F. Carotenoid modulation of immune function and sexual attractiveness in zebra finches. Science 300, 125–127 (2003). PubMed

McGraw K. J., Gregory A. J., Parker R. S. & Adkins-Regan E. Diet, plasma carotenoids, and sexual coloration in the zebra finch (Taeniopygia guttata). Auk 120, 400–410 (2003).

Simons M. J. P. & Verhulst S. Zebra finch females prefer males with redder bills independent of song rate-a meta-analysis. Behav. Ecol. 22, 755–762 (2011).

Simons M. J. P. et al.. Bill redness is positively associated with reproduction and survival in male and female zebra finches. Plos One 7, (2012). PubMed PMC

McGraw K. J. & Ardia D. R. Carotenoids, immunocompetence, and the information content of sexual colors: An experimental test. Am. Nat. 162, 704–712 (2003). PubMed

Birkhead T. R., Fletcher F. & Pellatt E. J. Sexual selection in the zebra finch Taeniopygia guttata: condition, sex traits and immune capacity. Behav. Ecol. Sociobiol. 44, 179–191 (1998).

Costantini D., Marasco V. & Moller A. A meta-analysis of glucocorticoids as modulators of oxidative stress in vertebrates. J. Comp. Physiol. B-Biochem. Syst. Environ. Physiol. 181, 447–456 (2011). PubMed

Sewalk C., Brewer G. & Hoffman D. Effects of diquat, an aquatic herbicide, on the development of mallard embryos. J. Toxicol. Environ. Health-Part -Curr. Issues 62, 33–45 (2001). PubMed

Maia R., Eliason C. M., Bitton P.-P., Doucet S. M. & Shawkey M. D. pavo: an R package for the analysis, visualization and organization of spectral data. Methods Ecol. Evol. 4, 906–913 (2013).

Butler M. W., Toomey M. B. & McGraw K. J. How many color metrics do we need? Evaluating how different color-scoring procedures explain carotenoid pigment content in avian bare-part and plumage ornaments. Behav. Ecol. Sociobiol. 65, 401–413 (2011).

Costantini D. On the measurement of circulating antioxidant capacity and the nightmare of uric acid. Methods Ecol. Evol. 2, 321–325 (2011).

Schielzeth H. Simple means to improve the interpretability of regression coefficients. Methods Ecol. Evol. 1, 103–113 (2010).

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...