Structural revisions of small molecules reported to cross-link G-quadruplex DNA in vivo reveal a repetitive assignment error in the literature
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem, komentáře
PubMed
27005677
PubMed Central
PMC4804300
DOI
10.1038/srep23499
PII: srep23499
Knihovny.cz E-zdroje
- MeSH
- DNA chemie MeSH
- G-kvadruplexy * MeSH
- Publikační typ
- časopisecké články MeSH
- komentáře MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA MeSH
Two molecules of mistaken identity are addressed. Uncovering these assignment errors led us to formulate more general guidelines about additional misassignments in cases of published bis-imines derived from 1,2-phenylenediamine and hydroxybenzaldehydes having no substituent in ortho-positions. The main purpose of this article is to highlight this repetitive assignment error in the literature and thus increase the likelihood of correct assignments in future papers.
Zobrazit více v PubMed
Yuan L. B. et al. Existence of G-quadruplex structures in promoter region of oncogenes confirmed by G-quadruplex DNA cross-linking strategy. Sci. Rep. 3, 1811, doi: 10.1038/srep01811 (2013). PubMed DOI PMC
Balasubramanian S., Hurley L. H. & Neidle S. Targeting G-quadruplexes in gene promoters: a novel anticancer strategy? Nat. Rev. Drug Discov. 10, 261–275 (2011). PubMed PMC
Biffi G., Tannahill D., McCafferty J. & Balasubramanian S. Quantitative visualization of DNA G-quadruplex structures in human cells. Nat. Chem. 5, 182–186 (2013). PubMed PMC
Siddiqui-Jain A., Grand C. L., Bearss D. J. & Hurley L. H. Direct evidence for a G-quadruplex in a promoter region and its targeting with a small molecule to repress c-MYC transcription. Proc. Natl. Acad. Sci. USA. 99, 11593–11598 (2002). PubMed PMC
Simonsson T., Pecinka P. & Kubista M. DNA tetraplex formation in the control region of c-myc. Nucleic Acids Res. 26, 1167–1172 (1998). PubMed PMC
Yoon T. P. & Jacobsen E. N. Privileged Chiral Catalysts. Science 299, 1691–1693 (2003). PubMed
McGarrigle E. M. & Gilheany D. G. Chromium− and Manganese−salen Promoted Epoxidation of Alkenes. Chem. Rev. 105, 1563–1602 (2005). PubMed
Baleizão C. & Garcia H. Chiral Salen Complexes: An Overview to Recoverable and Reusable Homogeneous and Heterogeneous Catalysts. Chem. Rev. 106, 3987–4043 (2006). PubMed
Wu B., Parquette J. R. & RajanBabu T. V. Regiodivergent Ring Opening of Chiral Aziridines. Science 326, 1662 (2009). PubMed
Yoon H. J., Kuwabara J., Kim J.-H. & Mirkin C. A. Allosteric Supramolecular Triple-Layer Catalysts. Science 330, 66–69 (2010). PubMed
Darensbourg D. J. Making Plastics from Carbon Dioxide: Salen Metal Complexes as Catalysts for the Production of Polycarbonates from Epoxides and CO2. Chem. Rev. 107, 2388–2410 (2007). PubMed
Van Zee N. J. & Coates G. W. Alternating Copolymerization of Propylene Oxide with Biorenewable Terpene-Based Cyclic Anhydrides: A Sustainable Route to Aliphatic Polyesters with High Glass Transition Temperatures. Angew. Chem. Int. Ed. 54, 2665–2668 (2015). PubMed
Kaul C., Müller M., Wagner M., Schneider S. & Carell T. Reversible bond formation enables the replication and amplification of a crosslinking salen complex as an orthogonal base pair. Nat. Chem. 3, 794 – 800 (2011). PubMed
Tomás-Gamasa M., Serdjukow S., Su M., Müller M. & Carell T. “Post-It” Type Connected DNA Created with a Reversible Covalent Cross-Link. Angew. Chem. Int. Ed. 54, 796–800 (2015). PubMed
Carey J. R. et al. A site-selective dual anchoring strategy for artificial metalloprotein design. J. Am. Chem. Soc. 126, 10812–10813 (2004). PubMed
Kumar T. B. et al. Catalysis by FeF3 in water: a green synthesis of 2-substituted 1,3-benzazoles and 1,2-disubstituted benzimidazoles. RSC Adv. 2, 11510–11519 (2012).
Krishnamurthy G. N. & Shashikala N. Synthesis of ruthenium(II) carbonyl complexes with 2-monosubstituted and 1,2-disubstituted benzimidazoles. J. Serb. Chem. Soc. 74, 1085–1096 (2009).
Krishnamurthy G. Synthesis and thermal degradation kinetics of some cobalt(II) complexes with 1,2-disubstituted benzimidazoles. J. Teach. Res. Chem. 17, 38–43 (2010).
Krishnamurthy G. & Shashikala N. Complexes of zinc(II) with 1,2-disubstituted benzimidazoles. J. Chem. Res. 12, 766–768 (2006).
Krieg R., Oehring H. & Halbhuber K.-J. Towards versatile metal associating substrates for the determination of peroxidatic activity/hydrogen peroxide by chemical designing of Schiff base derivatives. Cell. Mol. Biol. 47, 209–241 (2001). PubMed
Latif N., Mishriky N. & Assad F. M. Carbonyl and thiocarbonyl compounds. XX. Reaction of hydroxybenzaldehydes with o-phenylenediamine; newer aspects in benzimidazole synthesis. J. Roy. Neth. Chem. Soc. 102, 73–7 (1983).
Lu W.-Z., Liu B., Wei S.-H., Wu Y. & Liu J.-H.. Synthesis of 1-(p-hydroxybenzyl)-2-(p-hydroxyphenyl)-benzimidazole under microwave irradiation. Shenzhen Daxue Xuebao, Ligongban 24, 432–435 (2007).
Liu B. et al. Microwave synthesis, characteristics and antibacterial activities of benzimidazole derivatives. Guangzhou Huagong 34, 18–20 (2006).
Manrao M. R., Kaur G. & Kaul V. K. Synthesis and nematicidal activity of benzimidazoles. Indian J. of Agr. Chem. 44, 51–57 (2011).
Yang H.-W. et al. One-step synthesis and characteristics of benzimidazole derivatives. Youji Huaxue 24, 792–796 (2004).
Gao T., Ruan P., Huang F., Chen B. & Xiao Z. Aqueous phase synthesis and antibacterial activity of benzimidazole derivative. Guangzhou Huagong 40, 47–49 (2012).
Salavati-Niasari M., Davar F. & Bazarganipour M. Synthesis, characterization and catalytic oxidation of para-xylene by a manganese(III) Schiff base complex on functionalized multi-wall carbon nanotubes (MWNTs). Dalton Trans. 39, 7330–7337 (2010). PubMed
Reed J. E., Arola Arnal A., Neidle S. & Vilar R. Stabilization of G-quadruplex DNA and inhibition of telomerase activity by square-planar nickel(II) complexes. J. Am. Chem. Soc. 128, 5992–5993 (2006). PubMed
Azani M.-R., Hassanpour A., Bordbar A.-K. & Mirkhani V. Interaction of ct-DNA with 2,4-dihydroxy salophen. Bull. Korean Chem. Soc. 30, 1973–1977 (2009).
Kamaci M. & Kaya I. Synthesis, thermal and morphological properties of polyurethanes containing azomethine linkage. J. Inorg. Organomet. Polym. 24, 803–818 (2014).
Liu C. P., Wang M. K. & Xiao Q. Preparation, property characterization and UV-converting application of poly(conjugated azomethine-urethane)/hydroxyl polyacrylate resin. J. Appl. Polym. Sci., 129, 3629–3639 (2013).
Xiao Z.-A., Gao T., Huang F.-J. & Jiang T.-T. 4-[1-(4-Hydroxy-3-methoxybenzyl)-1H-benzimidazol-2-yl]-2-methoxyphenol. Acta Cryst. E67, o3087 (2011). PubMed PMC
Nicolaou K. C. & Snyder S. A. Chasing Molecules That Were Never There: Misassigned Natural Products and the Role of Chemical Synthesis in Modern Structure Elucidation. Angew. Chem. Int. Ed. 44, 1012–1044 (2005). PubMed
Suyama T. L., Gerwick W. H. & McPhail K. L. Survey of marine natural product structure revisions: A synergy of spectroscopy and chemical synthesis. Bioorg. Med. Chem. 19, 6675–6701 (2011). PubMed PMC
Hegazy W. H. Spectroscopic, thermal characterization and cytotoxic activity of bi-, tri- and tetra-nuclear Pd(II) and Pt(II) complexes with diSchiff base ligands. J. Mol. Struct. 1075, 103–112 (2014).
Abdulghani A. J. & Khaleel A. M. N. Preparation and characterization of di-, tri-, and tetra-nuclear Schiff base complexes derived from diamines and 3,4-dihydroxybenzaldehyde. Bioinorg. Chem. Appl. 219356/1–219356/15, doi: 10.1155/2013/219356 (2013). PubMed DOI PMC
Abad J. M. et al. Interactions of Schiff-base ligands with gold nanoparticles: structural, optical and electrocatalytic studies. Phys. Chem. Chem. Phys. 13, 5668–5678 (2011). PubMed
Azani M.-R., Hassanpour A., Bordbar A.-K. & Mehrgardi M. A. Interaction of calf thymus DNA with N, N’-bis(3,4-dihydroxybenzylidene)-1,2-diaminobenzene ligands. Russ. J. Phys. Chem. A 84, 2284–2289 (2010).
Revenga-Parra M., García T., Lorenzo E. & Pariente F. Comprehensive study of interactions between DNA and new electroactive Schiff base ligands. Biosens. Bioelectron. 22, 2675–2681 (2007). PubMed
Revenga-Parra M., Lorenzo E. & Pariente F. Synthesis and electrocatalytic activity towards oxidation of hydrazine of a new family of hydroquinone salophen derivatives: application to the construction of hydrazine sensors. Sens. Actuators, B 107, 678–687 (2005).
Cheltsov A. V. et al. Vaccinia Virus Virulence Factor N1L is a Novel Promising Target for Antiviral Therapeutic Intervention. J. Med. Chem. 53, 3899–3906 (2010). PubMed PMC
Khanfar M. A. & Taha M. O. Elaborate Ligand-Based Modeling Coupled with Multiple Linear Regression and k Nearest Neighbor QSAR Analyses Unveiled New Nanomolar mTOR Inhibitors. J. Chem. Inf. Model. 53, 2587–2612 (2013). PubMed
Nandan D. et al. Indel-based targeting of essential proteins in human pathogens that have close host orthologue(s): discovery of selective inhibitors for Leishmania donovani elongation factor-1α. Proteins: Struct., Funct., Bioinf. 67, 53–64 (2007). PubMed
Chebolu R., Kommi D. N., Kumar D., Bollineni N. & Chakraborti A. K. Hydrogen-Bond-Driven Electrophilic Activation for Selectivity Control: Scope and Limitations of Fluorous Alcohol-Promoted Selective Formation of 1,2-Disubstituted Benzimidazoles and Mechanistic Insight for Rationale of Selectivity. J. Org. Chem. 77, 10158–10167 (2012). PubMed