GATA-1 Inhibits PU.1 Gene via DNA and Histone H3K9 Methylation of Its Distal Enhancer in Erythroleukemia

. 2016 ; 11 (3) : e0152234. [epub] 20160324

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid27010793

GATA-1 and PU.1 are two important hematopoietic transcription factors that mutually inhibit each other in progenitor cells to guide entrance into the erythroid or myeloid lineage, respectively. PU.1 controls its own expression during myelopoiesis by binding to the distal URE enhancer, whose deletion leads to acute myeloid leukemia (AML). We herein present evidence that GATA-1 binds to the PU.1 gene and inhibits its expression in human AML-erythroleukemias (EL). Furthermore, GATA-1 together with DNA methyl Transferase I (DNMT1) mediate repression of the PU.1 gene through the URE. Repression of the PU.1 gene involves both DNA methylation at the URE and its histone H3 lysine-K9 methylation and deacetylation as well as the H3K27 methylation at additional DNA elements and the promoter. The GATA-1-mediated inhibition of PU.1 gene transcription in human AML-EL mediated through the URE represents important mechanism that contributes to PU.1 downregulation and leukemogenesis that is sensitive to DNA demethylation therapy.

Zobrazit více v PubMed

Rosenbauer F, Wagner K, Kutok JL, Iwasaki H, Le Beau MM, Okuno Y, et al. Acute myeloid leukemia induced by graded reduction of a lineage-specific transcription factor, PU.1. Nature genetics. 2004;36(6):624–30. . PubMed

Mikkola HK, Orkin SH. The journey of developing hematopoietic stem cells. Development. 2006;133(19):3733–44. 10.1242/dev.02568 . PubMed DOI

Laslo P, Spooner CJ, Warmflash A, Lancki DW, Lee HJ, Sciammas R, et al. Multilineage transcriptional priming and determination of alternate hematopoietic cell fates. Cell. 2006;126(4):755–66. 10.1016/j.cell.2006.06.052 . PubMed DOI

Orkin SH. Diversification of haematopoietic stem cells to specific lineages. Nature reviews Genetics. 2000;1(1):57–64. 10.1038/35049577 . PubMed DOI

Laiosa CV, Stadtfeld M, Graf T. Determinants of lymphoid-myeloid lineage diversification. Annual review of immunology. 2006;24:705–38. 10.1146/annurev.immunol.24.021605.090742 . PubMed DOI

Okuno Y, Huang G, Rosenbauer F, Evans EK, Radomska HS, Iwasaki H, et al. Potential autoregulation of transcription factor PU.1 by an upstream regulatory element. Molecular and cellular biology. 2005;25(7):2832–45. 10.1128/MCB.25.7.2832-2845.2005 PubMed DOI PMC

DeKoter RP, Singh H. Regulation of B lymphocyte and macrophage development by graded expression of PU.1. Science. 2000;288(5470):1439–41. . PubMed

McIvor Z, Hein S, Fiegler H, Schroeder T, Stocking C, Just U, et al. Transient expression of PU.1 commits multipotent progenitors to a myeloid fate whereas continued expression favors macrophage over granulocyte differentiation. Experimental hematology. 2003;31(1):39–47. . PubMed

Rosenbauer F, Owens BM, Yu L, Tumang JR, Steidl U, Kutok JL, et al. Lymphoid cell growth and transformation are suppressed by a key regulatory element of the gene encoding PU.1. Nature genetics. 2006;38(1):27–37. 10.1038/ng1679 . PubMed DOI

Moreau-Gachelin F, Tavitian A, Tambourin P. Spi-1 is a putative oncogene in virally induced murine erythroleukaemias. Nature. 1988;331(6153):277–80. 10.1038/331277a0 . PubMed DOI

Moreau-Gachelin F, Wendling F, Molina T, Denis N, Titeux M, Grimber G, et al. Spi-1/PU.1 transgenic mice develop multistep erythroleukemias. Molecular and cellular biology. 1996;16(5):2453–63. PubMed PMC

Pevny L, Lin CS, D'Agati V, Simon MC, Orkin SH, Costantini F. Development of hematopoietic cells lacking transcription factor GATA-1. Development. 1995;121(1):163–72. . PubMed

Fujiwara Y, Browne CP, Cunniff K, Goff SC, Orkin SH. Arrested development of embryonic red cell precursors in mouse embryos lacking transcription factor GATA-1. Proceedings of the National Academy of Sciences of the United States of America. 1996;93(22):12355–8. PubMed PMC

Harigae H, Takahashi S, Suwabe N, Ohtsu H, Gu L, Yang Z, et al. Differential roles of GATA-1 and GATA-2 in growth and differentiation of mast cells. Genes to cells: devoted to molecular & cellular mechanisms. 1998;3(1):39–50. . PubMed

Migliaccio AR, Rana RA, Sanchez M, Lorenzini R, Centurione L, Bianchi L, et al. GATA-1 as a regulator of mast cell differentiation revealed by the phenotype of the GATA-1low mouse mutant. The Journal of experimental medicine. 2003;197(3):281–96. PubMed PMC

Yu C, Cantor AB, Yang H, Browne C, Wells RA, Fujiwara Y, et al. Targeted deletion of a high-affinity GATA-binding site in the GATA-1 promoter leads to selective loss of the eosinophil lineage in vivo. The Journal of experimental medicine. 2002;195(11):1387–95. PubMed PMC

Zhang P, Behre G, Pan J, Iwama A, Wara-Aswapati N, Radomska HS, et al. Negative cross-talk between hematopoietic regulators: GATA proteins repress PU.1. Proceedings of the National Academy of Sciences of the United States of America. 1999;96(15):8705–10. PubMed PMC

Nerlov C, Querfurth E, Kulessa H, Graf T. GATA-1 interacts with the myeloid PU.1 transcription factor and represses PU.1-dependent transcription. Blood. 2000;95(8):2543–51. . PubMed

Chou ST, Khandros E, Bailey LC, Nichols KE, Vakoc CR, Yao Y, et al. Graded repression of PU.1/Sfpi1 gene transcription by GATA factors regulates hematopoietic cell fate. Blood. 2009;114(5):983–94. 10.1182/blood-2009-03-207944 PubMed DOI PMC

Leddin M, Perrod C, Hoogenkamp M, Ghani S, Assi S, Heinz S, et al. Two distinct auto-regulatory loops operate at the PU.1 locus in B cells and myeloid cells. Blood. 2011;117(10):2827–38. 10.1182/blood-2010-08-302976 PubMed DOI PMC

Curik N, Burda P, Vargova K, Pospisil V, Belickova M, Vlckova P, et al. 5-azacitidine in aggressive myelodysplastic syndromes regulates chromatin structure at PU.1 gene and cell differentiation capacity. Leukemia. 2012;26(8):1804–11. 10.1038/leu.2012.47 . PubMed DOI

Burda P, Curik N, Kokavec J, Basova P, Mikulenkova D, Skoultchi AI, et al. PU.1 activation relieves GATA-1-mediated repression of Cebpa and Cbfb during leukemia differentiation. Molecular cancer research: MCR. 2009;7(10):1693–703. 10.1158/1541-7786.MCR-09-0031 PubMed DOI PMC

Papadopoulos GL, Karkoulia E, Tsamardinos I, Porcher C, Ragoussis J, Bungert J, et al. GATA-1 genome-wide occupancy associates with distinct epigenetic profiles in mouse fetal liver erythropoiesis. Nucleic Acids Res. 2013;41(9):4938–48. 10.1093/nar/gkt167 PubMed DOI PMC

Martin DI, Orkin SH. Transcriptional activation and DNA binding by the erythroid factor GF-1/NF-E1/Eryf 1. Genes & development. 1990;4(11):1886–98. . PubMed

Dahl R, Simon MC. The importance of PU.1 concentration in hematopoietic lineage commitment and maturation. Blood cells, molecules & diseases. 2003;31(2):229–33. . PubMed

Chen GY, Sakuma K, Kannagi R. Significance of NF-kappaB/GATA axis in tumor necrosis factor-alpha-induced expression of 6-sulfated cell recognition glycans in human T-lymphocytes. The Journal of biological chemistry. 2008;283(50):34563–70. 10.1074/jbc.M804271200 PubMed DOI PMC

Choe KS, Radparvar F, Matushansky I, Rekhtman N, Han X, Skoultchi AI. Reversal of tumorigenicity and the block to differentiation in erythroleukemia cells by GATA-1. Cancer research. 2003;63(19):6363–9. . PubMed

Basova P, Pospisil V, Savvulidi F, Burda P, Vargova K, Stanek L, et al. Aggressive acute myeloid leukemia in PU.1/p53 double-mutant mice. Oncogene. 2014;33(39):4735–45. 10.1038/onc.2013.414 . PubMed DOI

Blobel GA, Nakajima T, Eckner R, Montminy M, Orkin SH. CREB-binding protein cooperates with transcription factor GATA-1 and is required for erythroid differentiation. Proceedings of the National Academy of Sciences of the United States of America. 1998;95(5):2061–6. PubMed PMC

Rodriguez P, Bonte E, Krijgsveld J, Kolodziej KE, Guyot B, Heck AJ, et al. GATA-1 forms distinct activating and repressive complexes in erythroid cells. The EMBO journal. 2005;24(13):2354–66. 10.1038/sj.emboj.7600702 PubMed DOI PMC

Ross IL, Dunn TL, Yue X, Roy S, Barnett CJ, Hume DA. Comparison of the expression and function of the transcription factor PU.1 (Spi-1 proto-oncogene) between murine macrophages and B lymphocytes. Oncogene. 1994;9(1):121–32. . PubMed

Cheng JX, Anastasi J, Watanabe K, Kleinbrink EL, Grimley E, Knibbs R, et al. Genome-wide profiling reveals epigenetic inactivation of the PU.1 pathway by histone H3 lysine 27 trimethylation in cytogenetically normal myelodysplastic syndrome. Leukemia. 2013;27(6):1291–300. 10.1038/leu.2013.45 . PubMed DOI

Feng Q, Zhang Y. The MeCP1 complex represses transcription through preferential binding, remodeling, and deacetylating methylated nucleosomes. Genes & development. 2001;15(7):827–32. . PubMed PMC

Schonheit J, Leutz A, Rosenbauer F. Chromatin Dynamics during Differentiation of Myeloid Cells. Journal of molecular biology. 2014. 10.1016/j.jmb.2014.08.015 . PubMed DOI

Welch JS, Ley TJ, Link DC, Miller CA, Larson DE, Koboldt DC, et al. The origin and evolution of mutations in acute myeloid leukemia. Cell. 2012;150(2):264–78. 10.1016/j.cell.2012.06.023 PubMed DOI PMC

Dluhosova M, Curik N, Vargova J, Jonasova A, Zikmund T, Stopka T. Epigenetic control of SPI1 gene by CTCF and ISWI ATPase SMARCA5. PloS one. 2014;9(2):e87448 10.1371/journal.pone.0087448 PubMed DOI PMC

Fenaux P. Myelodysplastic syndromes: From pathogenesis and prognosis to treatment. Seminars in hematology. 2004;41(2 Suppl 4):6–12. . PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace