Global Genomic Diversity of Human Papillomavirus 11 Based on 433 Isolates and 78 Complete Genome Sequences

. 2016 Jun 01 ; 90 (11) : 5503-5513. [epub] 20160512

Jazyk angličtina Země Spojené státy americké Médium electronic-print

Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, N.I.H., Extramural

Perzistentní odkaz   https://www.medvik.cz/link/pmid27030261

Grantová podpora
P30 AI051519 NIAID NIH HHS - United States
P30 CA013330 NCI NIH HHS - United States
R01 CA078527 NCI NIH HHS - United States
U01 CA078527 NCI NIH HHS - United States

UNLABELLED: Human papillomavirus 11 (HPV11) is an etiological agent of anogenital warts and laryngeal papillomas and is included in the 4-valent and 9-valent prophylactic HPV vaccines. We established the largest collection of globally circulating HPV11 isolates to date and examined the genomic diversity of 433 isolates and 78 complete genomes (CGs) from six continents. The genomic variation within the 2,800-bp E5a-E5b-L1-upstream regulatory region was initially studied in 181/207 (87.4%) HPV11 isolates collected for this study. Of these, the CGs of 30 HPV11 variants containing unique single nucleotide polymorphisms (SNPs), indels (insertions or deletions), or amino acid changes were fully sequenced. A maximum likelihood tree based on the global alignment of 78 HPV11 CGs (30 CGs from our study and 48 CGs from GenBank) revealed two HPV11 lineages (lineages A and B) and four sublineages (sublineages A1, A2, A3, and A4). HPV11 (sub)lineage-specific SNPs within the CG were identified, as well as the 208-bp representative region for CG-based phylogenetic clustering within the partial E2 open reading frame and noncoding region 2. Globally, sublineage A2 was the most prevalent, followed by sublineages A1, A3, and A4 and lineage B. IMPORTANCE: This collaborative international study defined the global heterogeneity of HPV11 and established the largest collection of globally circulating HPV11 genomic variants to date. Thirty novel complete HPV11 genomes were determined and submitted to the available sequence repositories. Global phylogenetic analysis revealed two HPV11 variant lineages and four sublineages. The HPV11 (sub)lineage-specific SNPs and the representative region identified within the partial genomic region E2/noncoding region 2 (NCR2) will enable the simpler identification and comparison of HPV11 variants worldwide. This study provides an important knowledge base for HPV11 for future studies in HPV epidemiology, evolution, pathogenicity, prevention, and molecular assay development.

Department of Experimental Virology National Reference Laboratory for Papillomaviruses Institute of Hematology and Blood Transfusion Prague Czech Republic

Department of Health Social Hygiene Service Centre for Health Protection Hong Kong Special Administrative Region China

Department of Medical Microbiology and Virology Faculty of Health Sciences University of the Free State Bloemfontein South Africa

Department of Microbiology and Infectious Diseases The Royal Women's Hospital Parkville Victoria Australia

Department of Microbiology Faculty of Medicine The Chinese University of Hong Kong Prince of Wales Hospital Hong Kong Special Administrative Region China

Department of Molecular Diagnostics University Hospital for Infectious Diseases Dr Fran Mihaljević Zagreb Croatia

Department of Obstetrics and Gynaecology Cardiff University School of Medicine Institute of Cancer and Genetics Cardiff United Kingdom

Department of Obstetrics and Gynaecology University of Melbourne Melbourne Victoria Australia

Department of Otolaryngology Lithuanian University of Health Sciences Medical Academy Kaunas Lithuania

Department of Otorhinolaryngology Faculty of Health Sciences University of the Free State Bloemfontein South Africa

Departments of Pediatrics Microbiology and Immunology Epidemiology and Population Health Obstetrics and Gynecology and Women's Health Albert Einstein College of Medicine New York New York USA

Dermatology Research Centre The Chinese University of Hong Kong Prince of Wales Hospital Hong Kong Special Administrative Region China

DNA Laboratories Sdn Bhd UKM MTDC Technology Centre Universiti Kebangsaan Malaysia Bangi Malaysia

Histocompatibility and Molecular Genetics Laboratory Dr Julio C Perrando Hospital Resistencia Chaco Argentina

Human Virology Group National Council of Scientific and Technical Research Institute of Molecular and Cell Biology of Rosario Rosario Argentina

Institute of Microbiology and Immunology Faculty of Medicine University of Ljubljana Ljubljana Slovenia

Institute of Microbiology Lausanne University Hospital and University of Lausanne Lausanne Switzerland

Institute of Pathology Faculty of Medicine University of Ljubljana Ljubljana Slovenia

Medizinisches Versorgungszentrum wagnerstibbe für Laboratoriumsmedizin und Pathologie GmbH Hannover Germany

Momate Memorial Laboratory Tokyo Japan

Murdoch Childrens Research Institute Parkville Victoria Australia

Oncogenic Viruses Service National Institute of Infectious Diseases ANLIS Dr Carlos G Malbrán Buenos Aires Argentina

Viral Exanthemata and STD Section National Microbiology Laboratory Public Health Agency of Canada Winnipeg Manitoba Canada

Zobrazit více v PubMed

Wiatrak BJ, Wiatrak DW, Broker TR, Lewis L. 2004. Recurrent respiratory papillomatosis: a longitudinal study comparing severity associated with human papilloma viral types 6 and 11 and other risk factors in a large pediatric population. Laryngoscope 114(Suppl 104):1–23. doi:10.1097/01.mlg.000148224.83491.0f. PubMed DOI

Aubin F, Prétet JL, Jacquard AC, Saunier M, Carcopino X, Jaroud F, Pradat P, Soubeyrand B, Leocmach Y, Mougin C, Riethmuller D. 2008. Human papillomavirus genotype distribution in external acuminata condylomata: a large French national study (EDiTH IV). Clin Infect Dis 47:610–615. doi:10.1086/590560. PubMed DOI

Garland SM, Steben M, Sings HL, James M, Lu S, Railkar R, Barr E, Haupt RM, Joura EA. 2009. Natural history of genital warts: analysis of the placebo arm of 2 randomized phase III trials of a quadrivalent HPV (types 6, 11, 16, 18) vaccine. J Infect Dis 119:805–814. doi:10.1086/597071. PubMed DOI

Bernard HU, Burk RD, Chen Z, van Doorslaer K, zur Hausen H, de Villiers EM. 2010. Classification of papillomaviruses (PVs) based on 189 PV types and proposal of taxonomic amendments. Virology 401:70–79. doi:10.1016/j.virol.2010.02.002. PubMed DOI PMC

Gillison M, Alemany L, Snjiders PJF, Chaturvedi A, Steinberg BM, Schwartz S, Castellsague X. 2012. Human papillomavirus and diseases of the upper airway: head and neck cancer and respiratory papillomatosis. Vaccine 30(Suppl 5):F34–F54. doi:10.1016/j.vaccine.2012.05.070. PubMed DOI

Komloš KF, Kocjan BJ, Košorok P, Luzar B, Meglič L, Potočnik M, Hočevar-Boltežar I, Gale N, Seme K, Poljak M. 2012. Tumor-specific and gender-specific pre-vaccination distribution of human papillomavirus types 6 and 11 in anogenital warts and laryngeal papillomas: a study on 574 tissue specimens. J Med Virol 84:1233–1241. doi:10.1002/jmv.23318. PubMed DOI

Danielewski JA, Garland SM, McCloskey J, Hillman RJ, Tabrizi SN. 2013. Human papillomavirus type 6 and 11 genetic variants found in 71 oral and anogenital epithelial samples from Australia. PLoS One 8:e63892. doi:10.1371/journal.pone.0063892. PubMed DOI PMC

Buchinsky FJ, Donfack J, Derkay CS, Choi SS, Conley SF, Myer CM III, McClay JE, Campisi P, Wiatrak BJ, Sobol SE, Schweinfurth JM, Tsuji DH, Hu FZ, Rockette HE, Ehrlich GD, Post JC. 2008. Age of child, more than HPV type, is associated with clinical course in recurrent respiratory papillomatosis. PLoS One 3:e2263. doi:10.1371/journal.pone.0002263. PubMed DOI PMC

Bouvard V, Baan R, Straif K, Grosse Y, Secretan B, El Ghissassi F, Benbrahim-Tallaa L, Guha N, Freeman C, Galichet L, Cogliano V. 2009. A review of human carcinogens. Part B. Biological agents. Lancet Oncol 10:321–322. doi:10.1016/S1470-2045(09)70096-8. PubMed DOI

Seedat RY, Thukane M, Jansen AC, Rossouw I, Goedhals D, Burt FJ. 2010. HPV types causing juvenile recurrent laryngeal papillomatosis in South Africa. Int J Pediatr Otorhinolaryngol 74:255–259. doi:10.1016/j.ijporl.2009.11.016. PubMed DOI

Tjon Pian Gi RE, San Giorgi MR, Slagter-Menkema L, van Hemel BM, van der Laan BF, van den Heuvel ER, Dikkers FG, Schuuring EM. 2015. Clinical course of recurrent respiratory papillomatosis: Comparison between aggressiveness of human papillomavirus-6 and human papillomavirus-11. Head Neck 37:1625–1632. doi:10.1002/hed.23808. PubMed DOI

Prétet J-C, Jacquard A-C, Saunier M, Clavel C, Dachez R, Gondry J, Pradat P, Soubeyrand B, Leocmach Y, Mougin C, Riethmuller D. 2008. Human papillomavirus genotype distribution in low-grade squamous intraepithelial lesions in France and comparison with CIN2/3 and invasive cervical cancer—the EDiTH III study. Gynecol Oncol 110:179–184. doi:10.1016/j.ygyno.2008.04.012. PubMed DOI

Bzhalava D, Guan P, Franceschi S, Dillner J, Clifford G. 2013. A systematic review of the prevalence of mucosal and cutaneous human papillomavirus types. Virology 445:224–231. doi:10.1016/j.virol.2013.07.015. PubMed DOI

Guillou L, Sahli R, Chaubert P, Monnier P, Cuttat JF, Costa J. 1991. Squamous cell carcinoma of the lung in a nonsmoking, nonirradiated patient with juvenile laryngotracheal papillomatosis. Evidence of human papillomavirus-11 DNA in both carcinoma and papillomas. Am J Surg Pathol 15:891–898. PubMed

But-Hadžič J, Jenko K, Poljak M, Kocjan BJ, Gale N, Strojan P. 2011. Sinonasal inverted papilloma associated with squamous cell carcinoma. Radiol Oncol 45:267–272. doi:10.2478/v10019-011-0033-4. PubMed DOI PMC

Katsenos S, Becker HD. 2011. Recurrent respiratory papillomatosis: a rare chronic disease, difficult to treat, with potential to lung cancer transformation: apropos of two cases and a brief literature review. Case Rep Oncol 4:162–171. doi:10.1159/000327094. PubMed DOI PMC

Yuan H, Myers S, Wang J, Zhou D, Woo JA, Kallakury B, Ju A, Bazylewicz M, Carter YM, Albanese C, Grant N, Shad A, Dritschilo A, Liu X, Schlegel R. 2012. Use of reprogrammed cells to identify therapy for respiratory papillomatosis. N Engl J Med 367:1220–1227. doi:10.1056/NEJMoa1203055. PubMed DOI PMC

Cornall AM, Roberts JM, Garland SM, Hillman RJ, Grulich AE, Tabrizi SN. 2013. Anal and perianal squamous carcinomas and high-grade intraepithelial lesions exclusively associated with “low-risk” HPV genotypes 6 and 11. Int J Cancer 133:2253–2258. doi:10.1002/ijc.28228. PubMed DOI

Gáll T, Kis A, Tatár TZ, Kardos G, Gergely L, Szarka K. 2013. Genomic differences in the background of different severity in juvenile-onset respiratory papillomatoses associated with human papillomavirus type 11. Med Microbiol Immunol 202:353–363. doi:10.1007/s00430-013-0297-y. PubMed DOI

Guimerà N, Lloveras B, Alemany L, Iljazovic E, Shin HR, Jung-Il S, de Sanjose S, Jenkins D, Bosch FX, Quint W. 2013. Laser capture microdissection shows HPV11 as both a causal and a coincidental infection in cervical cancer specimens with multiple HPV types. Histopathology 63:287–292. doi:10.1111/his.12137. PubMed DOI

Mauz PS, Zago M, Kurth R, Pawlita M, Holderried M, Thiericke J, Iftner A, Stubenrauch F, Sotlar K, Iftner T. 2014. A case of recurrent respiratory papillomatosis with malignant transformation, HPV11 DNAemia, high L1 antibody titre and a fatal papillary endocardial lesion. Virol J 11:114. doi:10.1186/1743-422X-11-114. PubMed DOI PMC

Chow EPF, Read TRH, Wigan R, Donovan B, Chen MY, Bradshaw CS, Fairley CK. 2015. Ongoing decline in genital warts among young heterosexuals 7 years after the Australian human papillomavirus (HPV) vaccination programme. Sex Transm Infect 91:214–219. doi:10.1136/sextrans-2014-051813. PubMed DOI

Joura EA, Giuliano AR, Iversen OE, Bouchard C, Mao C, Mehlsen J, Moreira ED Jr, Ngan Y, Petersen LK, Lazcano-Ponce E, Pitisuttithum P, Restrepo JA, Stuart G, Woelber L, Yang YC, Cuzick J, Garland SM, Huh W, Kjaer SK, Bautista OM, Chan IS, Chen J, Gesser R, Moeller E, Ritter M, Vuocolo S, Luxembourg A, Broad Spectrum HPV Vaccine Study . 2015. A 9-valent HPV vaccine against infection and intraepithelial neoplasia in women. N Engl J Med 372:711–723. doi:10.1056/NEJMoa1405044. PubMed DOI

Heinzel PA, Chan SY, Ho L, O'Connor M, Balaram P, Campo MS, Fujinaga K, Kiviat N, Kuypers J, Pfister H, Steinberg BM, Tay S-K, Villa LL, Bernard H-U. 1995. Variation of human papillomavirus type 6 (HPV-6) and HPV-11 genomes sampled throughout the world. J Clin Microbiol 33:1746–1754. PubMed PMC

Maver PJ, Kocjan BJ, Seme K, Potočnik M, Gale N, Poljak M. 2011. Prevaccination genomic diversity of human papillomavirus genotype 11: a study on 63 clinical isolates and 10 full-length genome sequences. J Med Virol 83:461–470. doi:10.1002/jmv.21994. PubMed DOI

Burk RD, Chen Z, Harari A, Smith BC, Kocjan BJ, Maver PJ, Poljak M. 2011. Classification and nomenclature system for human alphapapillomavirus variants: general features, nucleotide landmarks and assignment of HPV6 and HPV11 isolates to variant lineages. Acta Dermatovenerol Alp Panonica Adriat 20:113–123. PubMed PMC

de Matos RP, Sichero L, Mansur IM, do Bonfim CM, Bittar C, Nogueira RL, Küpper DS, Valera FC, Nogueira ML, Villa LL, Calmon MF, Rahal P. 2013. Nucleotide and phylogenetic analysis of human papillomavirus types 6 and 11 isolated from recurrent respiratory papillomatosis in Brazil. Infect Genet Evol 16:282–289. doi:10.1016/j.meegid.2012.12.033. PubMed DOI

Godínez JM, Nicolás-Párraga S, Pimenoff VN, Mengual-Chuliá B, Muñoz N, Bosch FX, Sánchez GI, McCloskey J, Bravo IG. 2014. Phylogenetically related, clinically different: human papillomaviruses 6 and 11 variants distribution in genital warts and in laryngeal papillomatosis. Clin Microbiol Infect 20:O406–O413. doi:10.1111/1469-0691.12420. PubMed DOI

Jelen MM, Chen Z, Kocjan BJ, Burt FJ, Chan PK, Chouhy D, Combrinck CE, Coutlée F, Estrade C, Ferenczy A, Fiander A, Franco EL, Garland SM, Giri AA, González JV, Gröning A, Heidrich K, Hibbitts S, Hošnjak L, Luk TN, Marinic K, Matsukura T, Neumann A, Oštrbenk A, Picconi MA, Richardson H, Sagadin M, Sahli R, Seedat RY, Seme K, Severini A, Sinchi JL, Smahelova J, Tabrizi SN, Tachezy R, Tohme S, Uloza V, Vitkauskiene A, Wong YW, Zidovec Lepej S, Burk RD, Poljak M. 2014. Global genomic diversity of human papillomavirus 6 based on 724 isolates and 190 complete genome sequences. J Virol 88:7307–7316. doi:10.1128/JVI.00621-14. PubMed DOI PMC

Wu X, Zhang C, Feng S, Liu C, Li Y, Yang Y, Gao J, Li H, Meng S, Li L, Zhang Y, Hu X, Wu X, Lin L, Li X, Wang Y. 2009. Detection of HPV types and neutralizing antibodies in Gansu Province, China. J Med Virol 81:693–702. doi:10.1002/jmv.21435. PubMed DOI

Gáll T, Kis A, Fehér E, Gergely L, Szarka K. 2011. Virological failure of intralesional cidofovir therapy in recurrent respiratory papillomatosis is not associated with genetic or epigenetic changes of HPV11: complete genome comparison of sequential isolates. Antiviral Res 92:356–358. doi:10.1016/j.antiviral.2011.09.007. PubMed DOI

Chansaenroj J, Theamboonlers A, Junyangdikul P, Supiyaphan P, Poovorawan Y. 2012. Whole genome analysis of human papillomavirus genotype 11 from cervix, larynx and lung. Asian Pac J Cancer Prev 13:2619–2623. doi:10.7314/APJCP.2012.13.6.2619. PubMed DOI

Yuan H, Zhou D, Wang J, Schlegel R. 2013. Divergent human papillomavirus associated with recurrent respiratory papillomatosis with lung involvement. Genome Announc 1(4):. doi:10.1128/genomeA.00474-13. PubMed DOI PMC

Kocjan BJ, Gale N, Hočevar Boltežar I, Seme K, Fujs Komloš K, Hošnjak L, Maver PJ, Jelen MM, Zupanič Pajnič I, Balazič J, Poljak M. 2013. Identical human papillomavirus (HPV) genomic variants persist in recurrent respiratory papillomatosis for up to 22 years. J Infect Dis 207:583–587. doi:10.1093/infdis/jis733. PubMed DOI

Katoh K, Toh H. 2010. Parallelization of the MAFFT multiple sequence alignment program. Bioinformatics 26:1899–1900. doi:10.1093/bioinformatics/btq224. PubMed DOI PMC

Stamatakis A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312–1313. doi:10.1093/bioinformatics/btu033. PubMed DOI PMC

Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP. 2012. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61:539–542. doi:10.1093/sysbio/sys029. PubMed DOI PMC

Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739. doi:10.1093/molbev/msr121. PubMed DOI PMC

Maddison DR, Maddison WP. 2005. MacClade 4: analysis of phylogeny and character evolution, version 4.08a. http://macclade.org/index.html. Accessed 2 April 2016.

Bravo IG, Alonso A. 2004. Mucosal human papillomaviruses encode four different E5 proteins whose chemistry and phylogeny correlate with malignant or benign growth. J Virol 78:13613–13626. doi:10.1128/JVI.78.24.13613-13626.2004. PubMed DOI PMC

Van Doorslaer K. 2013. Evolution of the Papillomaviridae. Virology 445:11–20. doi:10.1016/j.virol.2013.05.012. PubMed DOI

Burk RD, Harari A, Chen Z. 2013. Human papillomavirus genome variants. Virology 445:232–243. doi:10.1016/j.virol.2013.07.018. PubMed DOI PMC

Chen Z, Schiffman M, Herrero R, Desalle R, Anastos K, Segondy M, Sahasrabuddhe VV, Gravitt PE, Hsing AW, Burk RD. 2011. Evolution and taxonomic classification of human papillomavirus 16 (HPV16)-related variant genomes: HPV31, HPV33, HPV35, HPV52, HPV58 and HPV67. PLoS One 6:e20183. doi:10.1371/journal.pone.0020183. PubMed DOI PMC

Smith B, Chen Z, Reimers L, Van Doorslaer K, Schiffman M, Desalle R, Herrero R, Yu K, Wacholder S, Wang T, Burk RD. 2011. Sequence imputation of HPV16 genomes for genetic association studies. PLoS One 6:e21375. doi:10.1371/journal.pone.0021375. PubMed DOI PMC

Chen Z, Schiffman M, Herrero R, DeSalle R, Anastos K, Segondy M, Sahasrabuddhe VV, Gravitt PE, Hsing AW, Burk RD. 2013. Evolution and taxonomic classification of alphapapillomavirus 7 complete genomes: HPV18, HPV39, HPV45, HPV59, HPV68 and HPV70. PLoS One 8:e72565. doi:10.1371/journal.pone.0072565. PubMed DOI PMC

Harari A, Chen Z, Burk RD. 2014. Human papillomavirus genomics: past, present and future. Curr Probl Dermatol 45:1–18. doi:10.1159/000355952. PubMed DOI PMC

Rector A, Lemey P, Tachezy R, Mostmans S, Ghim SJ, Van Doorslaer K, Roelke M, Bush M, Montali RJ, Joslin J, Burk RD, Jenson AB, Sundberg JP, Shapiro B, Van Ranst M. 2007. Ancient papillomavirus-host co-speciation in Felidae. Genome Biol 8:R57. doi:10.1186/gb-2007-8-4-r57. PubMed DOI PMC

Chen Z, DeSalle R, Schiffman M, Herrero R, Burk RD. 2009. Evolutionary dynamics of variant genomes of human papillomavirus types 18, 45, and 97. J Virol 83:1443–1455. doi:10.1128/JVI.02068-08. PubMed DOI PMC

Ho L, Chan SY, Burk RD, Das BC, Fujinaga K, Icenogle JP, Kahn T, Kiviat N, Lancaster W, Mavromara-Nazos P. 1993. The genetic drift of human papillomavirus type 16 is a means of reconstructing prehistoric viral spread and the movement of ancient human populations. J Virol 67:6413–6423. PubMed PMC

Ong CK, Chan SY, Campo MS, Fujinaga K, Mavromara-Nazos P, Labropoulou V, Pfister H, Tay SK, ter Meulen J, Villa LL. 1993. Evolution of human papillomavirus type 18: an ancient phylogenetic root in Africa and intratype diversity reflect coevolution with human ethnic groups. J Virol 67:6424–6431. PubMed PMC

Calleja-Macias IE, Villa LL, Prado JC, Kalantari M, Allan B, Williamson A-L, Chung L-P, Collins RJ, Zuna RE, Dunn ST, Chu T-Y, Cubie HA, Cuschieri K, von Knebel-Doeberitz M, Martins CR, Sanchez GI, Bosch FX, Munoz N, Bernard H-U. 2005. Worldwide genomic diversity of the high-risk human papillomavirus types 31, 35, 52, and 58, four close relatives of human papillomavirus type 16. J Virol 79:13630–13640. doi:10.1128/JVI.79.21.13630-13640.2005. PubMed DOI PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...