Influence of selected environmental factors on the abundance of aerobic anoxygenic phototrophs in peat-bog lakes
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
PubMed
27032635
PubMed Central
PMC4943989
DOI
10.1007/s11356-016-6521-8
PII: 10.1007/s11356-016-6521-8
Knihovny.cz E-zdroje
- Klíčová slova
- Aerobic anoxygenic phototrophic bacteria, Environmental factors, Humic and dystrophic lakes, Peat-bog lakes, pH,
- MeSH
- aerobní bakterie fyziologie MeSH
- jezera mikrobiologie MeSH
- kyslík MeSH
- mikrobiologie vody MeSH
- mokřady * MeSH
- monitorování životního prostředí MeSH
- půda * MeSH
- roční období MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- kyslík MeSH
- půda * MeSH
Aerobic anoxygenic phototrophs (AAPs) are photoheterotrophic prokaryotes that are widespread in many limnic and marine environments. So far, little is known about their distribution in peat-bog lakes. Seventeen peat-bog lakes were sampled during three summer seasons 2009, 2011, and 2012, and the vertical distribution of AAPs was determined by infrared epifluorescence microscopy. The analysis demonstrated that in the surface layers of the studied lakes, AAP abundance ranged from 0.3 to 12.04 × 10(5) cells mL(-1), which represents <1 to 18.3 % of the total bacteria. The vertical distribution of AAPs confirmed their presence in the upper parts of the water column with minimum numbers in the anoxic bottom waters. We have shown that the AAP abundance was significantly positively correlated with the water pH, and the highest proportion of photoheterotrophs was found in peat-bog lakes with a pH between 6.7 and 7.6. Our results demonstrated an influence of water acidity on the abundance of AAPs, which may reflect a fundamental difference in the microbial composition between acidic and pH neutral peat-bog lakes.
Zobrazit více v PubMed
Allgaier M, Grossart H-P. Seasonal dynamics and phylogenetic diversity of free-living and particle-associated bacterial communities in four lakes in northeastern Germany. Aquat Microb Ecol. 2006;45:115–128. doi: 10.3354/ame045115. DOI
Caliz J, Casamayor EO. Environmental controls and composition of anoxygenic photoheterotrophs in ultraoligotrophic high-altitude lakes (Central Pyrenees) Environ Microbiol Rep. 2014;6:145–151. doi: 10.1111/1758-2229.12142. PubMed DOI
Cottrell MT, Mannino A, Kirchman DL. Bacteriochlorophyll and community structure of aerobic anoxygenic phototrophic in a particle-rich estuary. ISME J. 2010;4:945–954. doi: 10.1038/ismej.2010.13. PubMed DOI
Čuperová Z, Holzer E, Salka I, Sommaruga R, Koblížek M. Temporal changes and altitudinal distribution of aerobic anoxygenic phototrophs in mountain lakes. Appl Environ Microbiol. 2013;79:6439–6446. doi: 10.1128/AEM.01526-13. PubMed DOI PMC
Eiler A, Beier S, Sawstrom C, Karlsson J, Bertilsson S. High ratio of bacteriochlorophyll biosynthesis genes to chlorophyll biosynthesis genes in bacteria of humic lakes. Appl Environ Microbiol. 2009;75:7221–7228. doi: 10.1128/AEM.00960-09. PubMed DOI PMC
Fauteux L, Cottrell MT, Kirchman DL, Borrego CM, Grcia-Chaves MG, del Giorgio PA. Patterns in abundance, cell size and pigment content of aerobic anoxygenic phototrophic bacteria along environmental gradients in Northern Lakes. PLoS One. 2015 PubMed PMC
Ferrera I, Gasol JM, Sebastián M, Hojerová E, Koblížek M. Comparison of growth rates of aerobic anoxygenic phototrophic bacteria and other bacterioplankton groups in coastal Mediterranean waters. Appl Environ Microbiol. 2011;77:7451–7458. doi: 10.1128/AEM.00208-11. PubMed DOI PMC
Ferrera I, Borrego CM, Salazar G, Gasol JM. Marked seasonality of aerobic anoxygenic phototrophic bacteria in the coastal NW Mediterranean Sea as revealed by cell abundance, pigment concentration and pyrosequencing of pufM gene. Environ Microbiol. 2014;16:2953–2965. doi: 10.1111/1462-2920.12278. PubMed DOI
Fierer N, Jackson RB. The diversity and biogeography of soil bacterial communities. Proc Natl Acad Sci U S A. 2006;17:626–631. doi: 10.1073/pnas.0507535103. PubMed DOI PMC
Gąbka M, Owsianny PM. Shallow humic lakes of the Wielkopolska region—relation between dystrophy and eutrophy in lake ecosystems. Limnol Rev. 2006;6:95–102.
Górniak A, Jekaterynczuk-Rudczyk E, Dobrzyń P. Hydrochemistry of three dystrophic lakes in northeastern Poland. Acta Hydrochim Hydrobiol. 1999;27:12–18. doi: 10.1002/(SICI)1521-401X(199901)27:1<12::AID-AHEH12>3.0.CO;2-X. DOI
Hiraishi A, Shimada K. Aerobic anoxygenic photosynthetic bacteria with zinc-bacteriochlorophyll. J Gen Appl Microbiol. 2001;47:161–180. doi: 10.2323/jgam.47.161. PubMed DOI
Hojerová E, Mašín M, Brunet C, Ferrera I, Gasol JM, Koblížek M. Distribution and growth of aerobic anoxygenic phototrophs in the Mediterranean Sea. Environ Microbiol. 2011;13:2717–2725. doi: 10.1111/j.1462-2920.2011.02540.x. PubMed DOI
Jansson A, Meili M, Bergström AK, Jansson M. Whole-lake allochthonous organic carbon in a large humic lake (Örträsket, N. Sweden) Limnol Oceanogr. 2001;46:1691–1700. doi: 10.4319/lo.2001.46.7.1691. DOI
Jiao N, Zhang Y, Zeng Y, Hong N, Liu R, Chen F, et al. Distinct distribution pattern of abundance and diversity of aerobic anoxygenic phototrophic bacteria in the global ocean. Environ Microbiol. 2007;9:3091–3099. doi: 10.1111/j.1462-2920.2007.01419.x. PubMed DOI
Karhunen J, Arvola L, Peura S, Tiirola M. Green sulphur bacteria as a component of the photosynthetic plankton community in small dimictic humic lakes with anoxic hypolimnion. Aquat Microb Ecol. 2013;68:267–272. doi: 10.3354/ame01620. DOI
Koblížek M. Role of photoheterotrophic bacteria in the marine carbon cycle. In: JiaoN AF, Sanders S, editors. Microbial carbon pump in ocean. Washington, DC: Science/AAAS; 2011. pp. 49–51.
Koblížek M. Ecology of aerobic anoxygenic phototrophs in aquatic environments. FEMS Microbiol Rev. 2015;39:854–870. doi: 10.1093/femsre/fuv032. PubMed DOI
Koblížek M, Mašín M, Ras J, Poulton AJ, Prášil O. Rapid growth rates of aerobic anoxygenic phototrophs in the ocean. Environ Microbiol. 2007;9:2401–2406. doi: 10.1111/j.1462-2920.2007.01354.x. PubMed DOI
Koblížek M, Mlbounková J, Kolber Z, Kopecký J. On the photosynthetic properties of marine bacterium COL2P belonging to Roseobacter clade. Arch Microbiol. 2010;192:41–49. doi: 10.1007/s00203-009-0529-0. PubMed DOI
Kolber ZS, Plumpley FG, Lang AS, Beatty JT, et al. Contribution of aerobic photoheterotrophic bacteria to the carbon cycle in the ocean. Science. 2001;292:2492–2495. doi: 10.1126/science.1059707. PubMed DOI
Lamy D, Jeanthon C, Cottrell MT, Kirchman DL, Van Wambeke F, Ras J, Dahan O, Pujo-Pay M, Oriol L, Bariat L, Catala P, Cornet-Barthaux V, Lebaron P. Ecology of aerobic anoxygenic phototrophic bacteria along an oligotrophic gradient in the Mediterranean Sea. Biogeosciences. 2011;8:973–985. doi: 10.5194/bg-8-973-2011. DOI
Lepš J, Šmilauer P. Multivariate analysis of ecological data using CANOCO. Cambridge, UK: Cambridge University Press; 2003.
Lew S, Koblížek M, Lew M, Medová H, Glińska-Lewczuk K, Owsianny P (2015) Seasonal changes of microbial communities in two shallow peat-bog lakes. Folia Microbiol 60: published on line PubMed
Lin X, Green S, Tfaily MM, Prakash O, Konstantinidis KT, Corbett JE, Chanton JP, Cooper WT, Kostka JE. Microbial community structure and activity linked to contrasting biogeochemical gradients in bog and fen environments of the Glacial Lake Agassiz Peatland. Appl Environ Microbiol. 2012;78:7023–7031. doi: 10.1128/AEM.01750-12. PubMed DOI PMC
Lindström ES. Bacterioplankton community composition in five lakes differing in trophic status and humic content. Microb Ecol. 2000;40:104–113. PubMed
Lindström ES, Kamst-Van Agterveld MP, Zwart G. Distribution of typical freshwater bacterial groups is associated with pH, temperature, and lake water retention time. Appl Environ Microbiol. 2005;71:8201–8206. doi: 10.1128/AEM.71.12.8201-8206.2005. PubMed DOI PMC
Martinez-Garcia M, Swan BK, Poulton NJ, Gomez ML, Marshal D, Sieracki ME, Stepanauskas R. High-throughput single-cell sequencing identifies photoheterotrophs and chemoautotrophs in freshwater bacterioplankton. ISME J. 2012;6:113–123. doi: 10.1038/ismej.2011.84. PubMed DOI PMC
Mašín M, Zdun A, Stoń-Egiert J, Nausch M, Labrenz M, Moulisová V, Koblížek M. Seasonal changes and diversity of aerobic anoxygenic phototrophs in the Baltic Sea. Aquat Microb Ecol. 2006;45:247–254. doi: 10.3354/ame045247. DOI
Mašín M, Nedoma J, Pechar L, Koblížek M. Distribution of aerobic anoxygenic phototrophs in temperate freshwater system. Environ Microbiol. 2008;10:247–254. PubMed
Mašín M, Čuperová Z, Hojerová E, Salka I, Grossart HP, Koblížek M. Distribution of aerobic anoxygenic phototrophic bacteria in glacial lakes of northern Europe. Aquat Microb Ecol. 2012;66:77–86. doi: 10.3354/ame01558. DOI
Medová H, Boldareva EN, Hrouzek P, Borzenko SV, Namsareev ZB, Gorlenko VM, et al. High abundances of aerobic anoxygenic phototrophs in saline steppe lakes. FEMS Microbiol Ecol. 2011;76:393–400. doi: 10.1111/j.1574-6941.2011.01059.x. PubMed DOI
Muylaert K, Van der Gucht K, Vloemans N, De Meester L, Gillis M, Vyverman W. Relationship between bacterial community composition and bottom-up versus top-down variables in four eutrophic shallow lakes. Appl Environ Microbiol. 2002;68:4740–4750. doi: 10.1128/AEM.68.10.4740-4750.2002. PubMed DOI PMC
Pan X, Sanders R, Tappin AD, Worsfold PJ, Achterberg EP. Simultaneous determination of dissolved organic carbon and total dissolved nitrogen on a coupled high-temperature combustion total organic carbon-nitrogen chemiluminescence detection (HTC TOC-NCD) system. J Autom Methods Manag Chem. 2005;2005:240–246. doi: 10.1155/JAMMC.2005.240. PubMed DOI PMC
Percent SF, Frischer ME, Vescio PA, Duffy EB, Milano V, McLellan M, Stevens BM, Boylen CW, Nierzwicki-Bauer SA. Bacterial community structure of acid-impacted lakes: what controls diversity? Appl Environ Microbiol. 2008;74:1856–68. doi: 10.1128/AEM.01719-07. PubMed DOI PMC
Porter KG, Feig YS. The use of DAPI for identifying and counting aquatic microflora. Limnol Oceanogr. 1980;25:943–948. doi: 10.4319/lo.1980.25.5.0943. DOI
Ritchie AE, Johnson ZI. Abundance and genetic diversity of aerobic anoxygenic phototrophic bacteria of coastal regions of the Pacific Ocean. Appl Environ Microbiol. 2012;78:2858–2866. doi: 10.1128/AEM.06268-11. PubMed DOI PMC
Ruiz-González C, Lorenzo P, Ferrera I, Gasol JM, Sabater S. Effects of large river dam regulation on bacterioplankton community structure. FEMS Microbiol Ecol. 2013;84:316–331. doi: 10.1111/1574-6941.12063. PubMed DOI
Sait M, Davis EK, Janssen PH. Effect of pH on isolation and distribution of members of subdivision 1 of the phylum Acidobacteria occurring in soil. Appl Environ Microbiol. 2006;72:1852–1857. doi: 10.1128/AEM.72.3.1852-1857.2006. PubMed DOI PMC
Salka I, Čuperova Z, Mašin M, Kobližek M, Grossart H-P. Rhodoferax-related pufM gene cluster dominates the aerobic anoxygenic phototrophic communities in German freshwater lakes. Environ Microbiol. 2011;13:2865–2875. doi: 10.1111/j.1462-2920.2011.02562.x. PubMed DOI
Sieracki ME, Gilg IC, Their EC, Poulton NJ, Goericke R. Distribution of planktonic aerobic anoxygenic photoheterotrophic bacteria in the northwest Atlantic. Limnol Oceanogr. 2006;51:38–46. doi: 10.4319/lo.2006.51.1.0038. DOI
Stepanauskas R, Moran MA, Bergamaschi BA, Hollibaugh JT. Covariance of bacterioplankton composition and environmental variables in a temperate delta system. Aquat Microb Ecol. 2003;31:85–98. doi: 10.3354/ame031085. DOI
ter Braak CJF, Šmilauer P (2002) CANOCO reference manual and user’s guide to Canoco for Windows Software for Canonical Community Ordination version 4.5. microcomputer power Ithaca, NY
Van Heukelem L, Thomas CS. Computer-assisted high-performance liquid chromatography method development with applications to the isolation and analysis of phytoplankton pigments. J Chromatogr A. 2001;910:31–49. doi: 10.1016/S0378-4347(00)00603-4. PubMed DOI
Waidner LA, Kirchman DL. Diversity and distribution of ecotypes of the aerobic phototrophy gene pufM in the Delaware estuary. Appl Environ Microbiol. 2008;74:4012–4012. doi: 10.1128/AEM.02324-07. PubMed DOI PMC
Yannarell AC, Triplett EW. Geographic and environmental sources of variation in lake bacterial community composition. Appl Environ Microbiol. 2005;71:227–239. doi: 10.1128/AEM.71.1.227-239.2005. PubMed DOI PMC
Yannarell AC, Kent AD, Lauster GH, Kratz TK, Triplett EW. Temporal patterns in bacterial communities in three temperate lakes of different trophic status. Microb Ecol. 2003;46:391–405. doi: 10.1007/s00248-003-1008-9. PubMed DOI
Yurkov VV, Csotonyi JT. New light on aerobic anoxygenic phototrophs. In: Yurkov VV, Csotonyi JT, Hunter CN, Daldal F, Thurnauer MC, Beatty JT, editors. The purple phototrophic bacteria, advances in photosynthesis and respiration. Dordrecht: Springer Verlag; 2009. pp. 31–55.
Yurkova N, Rathgeber C, Swiderski J, Stackebrandt E, Beatty JT, Hall KJ, Yurkov VV. Diversity, distribution and physiology of the aerobic phototrophic bacteria in the mixolimnion of a meromictic lake. FEMS Microbiol Ecol. 2002;40:191–204. doi: 10.1111/j.1574-6941.2002.tb00952.x. PubMed DOI