Characterization of serum antibodies from women immunized with Gardasil: A study of HPV-18 infection of primary human keratinocytes
Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
R01 CA083679
NCI NIH HHS - United States
PubMed
27113165
PubMed Central
PMC4987144
DOI
10.1016/j.vaccine.2016.04.038
PII: S0264-410X(16)30179-7
Knihovny.cz E-zdroje
- Klíčová slova
- FcRn, HPV antibodies, HPV vaccine, HPV-18 neutralization, Primary human keratinocytes,
- MeSH
- antisérum imunologie MeSH
- heparansulfát proteoglykany metabolismus MeSH
- imunoglobulin G krev imunologie MeSH
- infekce papilomavirem prevence a kontrola MeSH
- keratinocyty virologie MeSH
- kultivované buňky MeSH
- lidé MeSH
- lidský papilomavirus 18 MeSH
- neutralizační testy MeSH
- neutralizující protilátky krev imunologie MeSH
- protilátky virové krev imunologie MeSH
- rekombinantní kvadrivalentní vakcína proti lidskému papilomaviru typu 6, 11, 16, 18 terapeutické užití MeSH
- Check Tag
- lidé MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- antisérum MeSH
- heparansulfát proteoglykany MeSH
- imunoglobulin G MeSH
- neutralizující protilátky MeSH
- protilátky virové MeSH
- rekombinantní kvadrivalentní vakcína proti lidskému papilomaviru typu 6, 11, 16, 18 MeSH
The prevalent human papillomaviruses (HPVs) infect human epithelial tissues. Infections by the mucosotropic HPV genotypes cause hyperproliferative ano-genital lesions. Persistent infections by high-risk (HR) HPVs such as HPV-16, HPV-18 and related types can progress to high grade intraepithelial neoplasias and cancers. Prophylactic HPV vaccines are based on DNA-free virus-like particles (VLPs) composed of the major capsid protein L1 of HPV-16, -18, -6 and -11 (Gardasil) or HPV-16 and -18 (Cervarix). Sera from vaccinated animals effectively prevent HPV pseudovirions to infect cell lines and mouse cervical epithelia. Both vaccines have proven to be highly protective in people. HPV pseudovirions are assembled in HEK293TT cells from matched L1 and L2 capsid proteins to encapsidate a reporter gene. Pseudovirions and genuine virions have structural differences and they infect cell lines or primary human keratinocytes (PHKs) with different efficiencies. In this study, we show that sera and isolated IgG from women immunized with Gardasil prevent authentic HPV-18 virions from infecting PHKs, whereas non-immune sera and purified IgG thereof are uniformly ineffective. Using early passage PHKs, neutralization is achieved only if immune sera are added within 2-4h of infection. We attribute the timing effect to a conformational change in HPV virions, thought to occur upon initial binding to heparan sulfate proteoglycans (HSPG) on the cell surface. This interpretation is consistent with the inability of immune IgG bound to or taken up by PHKs to neutralize the virus. Interestingly, the window of neutralization increases to 12-16h in slow growing, late passage PHKs, suggestive of altered cell surface molecules. In vivo, this window might be further lengthened by the time required to activate the normally quiescent basal cells to become susceptible to infection. Our observations help explain the high efficacy of HPV vaccines.
Department of Microbiology University of Alabama at Birmingham Birmingham AL 35294 USA
Department of Obstetrics and Gynecology University of Alabama at Birmingham Birmingham AL 35294 USA
Zobrazit více v PubMed
Bravo IG, Felez-Sanchez M. Papillomaviruses: Viral evolution, cancer and evolutionary medicine. Evol Med Public Health. 2015;2015:32–51. PubMed PMC
Bzhalava D, Eklund C, Dillner J. International standardization and classification of human papillomavirus types. Virology. 2015;476:341–4. PubMed
zur Hausen H. Papillomaviruses in the causation of human cancers - a brief historical account. Virology. 2009;384:260–5. PubMed
World Health Organization/International Agency for Research on Cancer GLOBOCAN 2012: Estimated cancer incidence, moratlity and prevalence worldwide in 2012. 2012 Available at http://globocan.iarc.fr/Default.aspx.
Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61:69–90. PubMed
Chow LT, Broker TR, Steinberg BM. The natural history of human papillomavirus infections of the mucosal epithelia. APMIS. 2010;118:422–49. PubMed
Dollard SC, Wilson JL, Demeter LM, Bonnez W, Reichman RC, Broker TR, et al. Production of human papillomavirus and modulation of the infectious program in epithelial raft cultures. Genes Dev. 1992;6:1131–42. PubMed
Wilson JL, Dollard SC, Chow LT, Broker TR. Epithelial-specific gene expression during differentiation of stratified primary human keratinocyte cultures. Cell Growth Differ. 1992;3:471–83. PubMed
Wang HK, Duffy AA, Broker TR, Chow LT. Robust production and passaging of infectious HPV in squamous epithelium of primary human keratinocytes. Genes Dev. 2009;23:181–94. PubMed PMC
Schiller JT, Lowy DR. Understanding and learning from the success of prophylactic human papillomavirus vaccines. Nat Rev Microbiol. 2012;10:681–92. PubMed PMC
Bosch FX, Broker TR, Forman D, Moscicki AB, Gillison ML, Doorbar J, et al. Comprehensive control of human papillomavirus infections and related diseases. Vaccine. 2013;31(Suppl 7):H1–31. PubMed PMC
Joura EA, Giuliano AR, Iversen O-E, Bouchard C, Mao C, Mehlsen J, et al. A 9-valent HPV vaccine against Infection and Intraepithelial neoplasia in women. N Engl J Med. 2015;372:711–23. PubMed
Buck CB, Thompson CD. Production of papillomavirus-based gene transfer vectors. Curr Protoc Cell Biol. 2007 Chapter 26:Unit 26.1. PubMed
Buck CB, Thompson CD, Pang Y-YS, Lowy DR, Schiller JT. Maturation of papillomavirus capsids. J Virol. 2005;79:2839–46. PubMed PMC
Joyce JG, Tung JS, Przysiecki CT, Cook JC, Lehman ED, Sands JA, et al. The L1 major capsid protein of human papillomavirus type L1 recombinant virus-like particles interacts with heparin and cell-surface glycosaminoglycans on human keratinocytes. J Biol Chem. 1999;274:5810–22. PubMed
Li Z, Palaniyandi S, Zeng R, Tuo W, Roopenian DC, Zhu X. Transfer of IgG in the female genital tract by MHC class I-related neonatal Fc receptor (FcRn) confers protective immunity to vaginal infection. Proc Natl Acad Sci USA. 2011;108:4388–93. PubMed PMC
Mallery DL, McEwan WA, Bidgood SR, Towers GJ, Johnson CM, James LC. Antibodies mediate intracellular immunity through tripartite motif-containing 21 (TRIM21) Proc Natl Acad Sci USA. 2010;107:19985–90. PubMed PMC
Bidgood SR, Tam JC, McEwan WA, Mallery DL, James LC. Translocalized IgA mediates neutralization and stimulates innate immunity inside infected cells. Proc Natl Acad Sci USA. 2014;111:13463–8. PubMed PMC
van Egmond M, Bakema JE, Woof JM. Fc receptors in mucosal immunology. In: Mestecky J, Strober W, Russell MW, Kelsall BL, Cheroute H, Lambrecht BN, editors. Mucosal immunology. 4th Elsevier/Academic Press; Waltham, MA: 2015. pp. 409–28.
Baker K, Blumberg RS, Kaetzel CS. Immunoglobulin transport and immunoglobulin receptors. In: Mestecky J, Strober W, Russell MW, Kelsall BL, Cheroute H, Lambrecht BN, editors. Mucosal immunology. 4th Elsevier/Academic Press; Waltham, MA: 2015. pp. 349–408.
Russell MW, Kilian M, Mantis NJ, Corthésy B. Biological activities of IgA. In: Mestecky J, Strober W, Russell MW, Kelsall BL, Cheroute H, Lambrecht BN, editors. Mucosal immunology. 4th Elsevier/Academic Press; Waltham, MA: 2015. pp. 429–54.
World Health Organization Human papillomavirus vaccines WHO position paper. 2009;84:117–32.
Gupta S, Gach JS, Becerra JC, Phan TB, Pudney J, Moldoveanu Z, et al. The neonatal Fc receptor (FcRn) enhances human immunodeficiency virus type 1 (HIV-1) transcytosis across epithelial cells. PLoS Pathog. 2013;9:e1003776. PubMed PMC
Wang HK, Broker TR, Chow LT. Robust HPV-18 production in organotypic cultures of primary human keratinocytes. Methods Mol Biol. 2015;1249:93–109. PubMed
Mestecky J, Wright PF, Lopalco L, Staats HF, Kozlowski PA, Moldoveanu Z, et al. Scarcity or absence of humoral immune responses in the plasma and cervicovaginal lavage fluids of heavily HIV-1-exposed but persistently seronegative women. AIDS Res Hum Retrov. 2011;27:469–86. PubMed PMC
Moldoveanu Z, Huang WQ, Kulhavy R, Pate MS, Mestecky J. Human male genital tract secretions: both mucosal and systemic immune compartments contribute to the humoral immunity. J Immunol. 2005;175:4127–36. PubMed
Wei Q, Moldoveanu Z, Huang WQ, Alexander RC, Goepfert PA, Mestecky J. Comparative evaluation of HIV-1 neutralization in external secretions and sera of HIV-1-Infected women. Open AIDS J. 2012;6:293–302. PubMed PMC
Nasseri M, Hirochika R, Broker TR, Chow LT. A human papilloma virus type 11 transcript encoding an E1--E4 protein. Virology. 1987;159:433–9. PubMed
Meyers C, Bromberg-White JL, Zhang J, Kaupas ME, Bryan JT, Lowe RS, et al. Infectious virions produced from a human papillomavirus type 18/16 genomic DNA chimera. J Virol. 2002;76:4723–33. PubMed PMC
Harper DM. Currently approved prophylactic HPV vaccines. Expert Rev Vaccines. 2009;8:1663–79. PubMed
Ober RJ, Radu CG, Ghetie V, Ward ES. Differences in promiscuity for antibody-FcRn interactions across species: implications for therapeutic antibodies. Int Immunol. 2001;13:1551–9. PubMed
Day PM, Schiller JT. The role of furin in papillomavirus infection. Future Microbiol. 2009;4:1255–62. PubMed PMC
Schiller JT, Day PM, Kines RC. Current understanding of the mechanism of HPV infection. Gynecol Oncol. 2010;118:S12–7. PubMed PMC
Culp TD, Christensen ND. Kinetics of in vitro adsorption and entry of papillomavirus virions. Virology. 2004;319:152–61. PubMed
Roberts JN, Buck CB, Thompson CD, Kines R, Bernardo M, Choyke PL, et al. Genital transmission of HPV in a mouse model is potentiated by nonoxynol-9 and inhibited by carrageenan. Nat Med. 2007;13:857–61. PubMed
Jagu S, Kwak K, Schiller JT, Lowy DR, Kleanthous H, Kalnin K, et al. Phylogenetic considerations in designing a broadly protective multimeric L2 vaccine. J Virol. 2013;87:6127–36. PubMed PMC
Day PM, Gambhira R, Roden RB, Lowy DR, Schiller JT. Mechanisms of human papillomavirus type 16 neutralization by L2 cross-neutralizing and L1 type-specific antibodies. J Virol. 2008;82:4638–46. PubMed PMC
Kines RC, Thompson CD, Lowy DR, Schiller JT, Day PM. The initial steps leading to papillomavirus infection occur on the basement membrane prior to cell surface binding. Proc Natl Acad Sci USA. 2009;106:20458–63. PubMed PMC
Alfsen A, Iniguez P, Bouguyon E, Bomsel M. Secretory IgA specific for a conserved epitope on gp41 envelope glycoprotein inhibits epithelial transcytosis of HIV-1. J Immunol. 2001;166:6257–65. PubMed
Mestecky J. Humoral immune responses to the human immunodeficiency virus type-1 (HIV-1) in the genital tract compared to other mucosal sites. J Reprod Immunol. 2007;73:86–97. PubMed
Tudor D, Derrien M, Diomede L, Drillet AS, Houimel M, Moog C, et al. HIV-1 gp41-specific monoclonal mucosal IgAs derived from highly exposed but IgG-seronegative individuals block HIV-1 epithelial transcytosis and neutralize CD4(+) cell infection: an IgA gene and functional analysis. Mucosal Immunol. 2009;2:412–26. PubMed
Day PM, Lowy DR, Schiller JT. Heparan sulfate-independent cell binding and infection with furin-precleaved papillomavirus capsids. J Virol. 2008;82:12565–8. PubMed PMC
Pyeon D, Pearce SM, Lank SM, Ahlquist P, Lambert PF. Establishment of human papillomavirus infection requires cell cycle progression. PLoS Pathog. 2009;5:e1000318. PubMed PMC