Multielemental analysis of 20 mushroom species growing near a heavily trafficked road in Poland
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
PubMed
27155831
PubMed Central
PMC4975766
DOI
10.1007/s11356-016-6760-8
PII: 10.1007/s11356-016-6760-8
Knihovny.cz E-zdroje
- Klíčová slova
- Consumer health, Contamination, Environment, Mushrooms, Trace elements,
- MeSH
- Agaricales chemie MeSH
- analýza hlavních komponent MeSH
- doprava MeSH
- látky znečišťující životní prostředí analýza MeSH
- monitorování životního prostředí metody MeSH
- shluková analýza MeSH
- stopové prvky analýza MeSH
- zelenina MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Polsko MeSH
- Názvy látek
- látky znečišťující životní prostředí MeSH
- stopové prvky MeSH
The aim of this work was to compare 10 mostly edible aboveground and 10 wood-growing mushroom species collected near a heavily trafficked road (approximately 28,000 vehicles per 24 h) in Poland with regard to their capacity to accumulate 26 trace elements (Ag, Al, As, Au, B, Ba, Bi, Cd, Co, Cr, Cu, Fe, Ga, Ge, In, Li, Mn, Ni, Pb, Re, Sb, Se, Sr, Te, Tl, and Zn) in their fruit bodies in order to illustrate mushroom diversity in element accumulation. All analyses were performed using an inductively coupled plasma optical emission spectrometry (ICP-OES) spectrometer in synchronous dual view mode. The aboveground species had significantly higher levels of 12 elements, including Ag, As, Pb, and Se, compared to the wood-growing species. An opposite relationship was observed only for Au, Ba, and Sr. The results of principal component analysis (PCA) and hierarchical cluster analysis (HCA) implied some new relationships among the analyzed species and elements. Of the analyzed mushroom species, lead content in Macrolepiota procera would seem to pose a health risk; however, at present knowledge regarding lead bioaccessibility from mushrooms is quite limited.
Department of Chemistry Poznań University of Life Sciences Poznań Poland
Department of Environmental Medicine Poznań University of Medical Sciences Poznań Poland
Department of Mathematical and Statistical Methods Poznań University of Life Sciences Poznań Poland
Department of Vegetable Crops Poznań University of Life Sciences Poznań Poland
Faculty of Chemistry Adam Mickiewicz University in Poznań Poznań Poland
Zobrazit více v PubMed
Alonso J, Garcia MA, Pérez-López M, Melgar MJ. The concentrations and bioconcentration factors of copper and zinc in edible mushrooms. Arch Environ Contam Toxicol. 2003;44:180–188. doi: 10.1007/s00244-002-2051-0. PubMed DOI
Árvay J, Tomáš J, Hauptvogl M, Kopernická M, Kováčik A, Bajčan D, Massányi P. Contamination of wild-grown edible mushrooms by heavy metals in a former mercury-mining area. J Environ Sci Health B. 2014;49:815–827. doi: 10.1080/03601234.2014.938550. PubMed DOI
Ayaz FA, Torun H, Colak A, Sesli E, Millson M, Glew RH. Macro- and microelement contents of fruiting bodies of wild-edible mushrooms growing in the east Black Sea region of Turkey. Food Nutr Sci. 2011;2:53–59. doi: 10.4236/fns.2011.22007. DOI
Borovička J, Řanda Z. Distribution of iron, cobalt, zinc and selenium in macrofungi. Mycol Prog. 2007;6:249–259. doi: 10.1007/s11557-007-0544-y. DOI
Breś W, Golcz A, Komosa A, Kozik E, Tyksiński W. Żywienie roślin ogrodniczych. The breeding of garden plants. Poznań: University of Life Sciences Publishing; 2009.
Chojnacka A, Jarzyńska G, Lewandowska M, Nnorom IC, Falandysz J. Trace elements in Yellow-cracking Bolete [Xerocomus subtomentosus (L.) Quel.] collected at the same site over three years. Fresen Environ Bull. 2013;22:2707–2712.
Chudzyński K, Jarzyńska G, Falandysz J. Cadmium, lead and some other trace elements in Larch Bolete mushrooms (Suilllus grevillei) (Klotzch) Sing., collected from the same site over two years. Food Addit Contam B. 2013;6:249–253. doi: 10.1080/19393210.2013.807881. PubMed DOI
Cuny D, van Haluwyn C, Pesch R. Biomonitoring of trace elements in air and soil compartments along the major motorway in France. Water Air Soil Poll. 2001;125:273–289. doi: 10.1023/A:1005278900969. DOI
Czępińska-Kamińska D, Biały K, Brożek S, Chojnicki J, Januszek K, Kowalkowski A, Krzyżanowski A, Okołowicz M, Sienkiewicz A, Skiba S, Wójcik J, Zielony R (2000) Klasyfikacja gleb leśnych Polski. CILP Warszawa 1–123 [in Polish]
Durkan N, Ugulu I, Unver MC, Dogan Y, Baslar S. Concentrations of trace elements aluminum, boron, cobalt and tin in various wild edible mushroom species from Buyuk Menderes River Basin of Turkey by ICP-OES. Trace Elem Electroly. 2011;28:242–248. doi: 10.5414/TEX01198. DOI
Environmental Protection Agency (2015) Inventory of U.S. greenhouse gas emissions and sinks: 1990–2013. Washington.
Falandysz J, Borovička J. Macro and trace mineral constituents and radionuclides in mushrooms: health benefit and risks. Appl Microbiol Biotechnol. 2013;97:477–501. doi: 10.1007/s00253-012-4552-8. PubMed DOI PMC
Falandysz J, Lipka K, Mazur A. Mercury and its bioconcentration factors in fly agaric (Amanita muscaria) from spatially distant sites in Poland. J Environ Sci Health A. 2007;42:1625–1630. doi: 10.1080/10934520701517879. PubMed DOI
Falandysz J, Widzicka E, Kojta AK, Jarzyńska G, Drewnowska M, Dryżałowska A, Danisiewicz-Czupryńska D, Lenz E, Nnorom IC. Mercury in common chanterelles mushrooms: Cantharellus spp. update. Food Chem. 2012;133:842–850. doi: 10.1016/j.foodchem.2012.01.102. DOI
GDDKiA 2005. Generalny pomiar ruchu w 2005 roku (General traffic measurement in 2005). Available from: http://www.gddkia.gov.pl/userfiles/articles/g/GENERALNY_POMIAR_RUCHU_2005/0.1.2.2_SDR_w_pkt_pomiarowych_w_2005_roku.pdf
GDDKiA 2010. Generalny pomiar ruchu w 2010 roku. (General traffic measurement in 2010). Available from: http://www.gddkia.gov.pl/userfiles/articles/g/GENERALNY_POMIAR_RUCHU_2010/0.1.1.4_SDR_w_pkt_pomiarowych_w_2010_roku.pdf
Gramss G, Voigt K-D. Clues for regulatory processes in fungal uptake and transfer of minerals to the basidiospore. Biol Trace Elem Res. 2013;154:140–149. doi: 10.1007/s12011-013-9719-3. PubMed DOI
Gucia M, Jarzyńska G, Rafał E, Roszak M, Kojta AK, Osiej I, Falandysz J. Multivariate analysis of mineral constituents of edible Parasol Mushroom (Macrolepiota procera) and soils beneath fruiting bodies collected from Northern Poland. Environ Sci Pollut Res. 2012;19:416–431. doi: 10.1007/s11356-011-0574-5. PubMed DOI PMC
Gucia M, Jarzyńska G, Kojta AK, Falandysz J. Temporal variability in 20 chemical elements content of Parasol Mushroom (Macrolepiota procera) collected from two sites over a few years. J Environ Sci Health B. 2012;47:81–88. doi: 10.1080/03601234.2012.611433. PubMed DOI
Huang Q, Jia Y, Wan Y, Li H, Jiang R. Market survey and risk assessment for trace metals in edible fungi and the substrate role in accumulation of heavy metals. J Food Sci. 2015;80:1612–1618. doi: 10.1111/1750-3841.12923. PubMed DOI
ISO 11271:2002 Jakość gleby. Oznaczanie potencjału redox. Metoda polowa. (Soil quality. Determination of redox potential. Field method.) [in Polish]
IUSS. World Reference Base for Soil Resources 2014, update 2015. International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No. 106. FAO, Rome.
Kalač P. Trace element contents in European species of wild growing edible mushrooms: a review for the period 2000–2009. Food Chem. 2010;122:2–15. doi: 10.1016/j.foodchem.2010.02.045. DOI
Kalač P, Svoboda L. A review of trace element concentrations in edible mushrooms. Food Chem. 2000;69:273–281. doi: 10.1016/S0308-8146(99)00264-2. DOI
Kaya A, Bag H. Trace element contents of edible macrofungi growing in Adiayman, Turkey. Asian J Chem. 2010;22:1515–1521.
Kojta AK, Jarzyńska G, Falandysz J. Mineral composition and heavy metal accumulation capacity of Bay Bolete (Xerocomus badius) fruiting bodies collected near a former gold and copper mining area. J Geochem Explor. 2012;121:76–82. doi: 10.1016/j.gexplo.2012.08.004. DOI
Künzli N, Kaiser R, Medina S, Studnicka M, Chanel O, Filliger P, Herry M, Horak F, Jr, Puybonnieux-Texier V, Quénel P, Schneider J, Seethaler R, Vergnaud J-C, Sommer H. Public-health impact of outdoor and traffic-related air pollution: a European assessment. Lancet. 2000;356:795–801. doi: 10.1016/S0140-6736(00)02653-2. PubMed DOI
Mleczek M, Siwulski M, Mikołajczak P, Gąsecka M, Rissmann I, Goliński P, Sobieralski K. Differences in Cu content in selected mushroom species growing in the same unpolluted areas in Poland. J Environ Sci Health B. 2015;50:659–666. doi: 10.1080/03601234.2015.982427. PubMed DOI
Mleczek M, Siwulski M, Mikołajczak P, Gąsecka M, Sobieralski K, Szymańczyk M, Goliński P. Content of selected elements and possibility to grow Boletus badius fruiting bodies in extremely polluted wastes. J Environ Sci Health A. 2015;50:767–775. doi: 10.1080/10934529.2015.1012014. PubMed DOI
Mleczek M, Niedzielski P, Kalač P, Siwulski M, Rzymski P, Gąsecka M. Levels of platinum group elements and rare earth elements in wild mushroom species growing near a busy trunk road. Food Addit Contam A. 2016;33:86–94. PubMed
Niedzielski P, Mleczek M, Magdziak Z, Siwulski M, Kozak L. Selected arsenic species: As(III), As(V) and dimethylarsenic acid (DMAA) in Xerocomus badius fruiting bodies. Food Chem. 2013;141:3571–3577. doi: 10.1016/j.foodchem.2013.06.103. PubMed DOI
PN-ISO 11466:2002 Jakość gleby. Ekstrakcja pierwiastków śladowych rozpuszczalnych w wodzie królewskiej. Soil quality. The extraction of trace elements soluble in aqua regia.
PN-ISO 1265+AC1:1997 Jakość gleby. Oznaczanie przewodności elektrolitycznej. (Soil quality. Determination of electrolytic conduction.) [in Polish]
PN-ISO 10390:1997 Jakość gleby. Oznaczanie pH. (Soil quality. Determination of pH.) [in Polish]
PN-ISO 11465:1999 Jakość gleby. Oznaczanie zawartości suchej masy i wody w glebie w przeliczeniu na suchą masę gleby. Metoda wagowa. (Soil quality. Determination of dry matter and water content on a mass basis. Gravimetric method.) [in Polish]
PN-ISO 14235:2003 Jakość gleby. Oznaczanie zawartości węgla organicznego przez utlenianie dwuchromianem(VI) w środowisku kwasu siarkowego(VI). (Soil quality. Determination of organic carbon by sulfochromic oxidation.) [in Polish]
Radulescu C, Stihi C, Busuioc G, Gheboianu AI, Popescu IV. Studies concerning heavy metals bioaccumulation of wild edible mushrooms from industrial area by using spectrometric techniques. Bull Environ Contam Toxicol. 2010;84:641–646. doi: 10.1007/s00128-010-9976-1. PubMed DOI
Salminen R, et al., editors. Geochemical Atlas of Europe. Part 1—background information, methodology and maps. Geological survey of Finland. Espoo: Otamedia Oy; 2005.
Sarikurkcu C, Tepe B, Solak MH, Cetinkaya S. Metal concentration of wild edible mushrooms from Turkey. Ecol Food Nutr. 2012;51:346–363. doi: 10.1080/03670244.2012.674448. PubMed DOI
Sarikurkcu C, Tepe B, Kocak MS, Uren MC. Metal concentration and antioxidant activity of edible mushrooms from Turkey. Food Chem. 2015;175:549–555. doi: 10.1016/j.foodchem.2014.12.019. PubMed DOI
Severoglu Z, Sumer S, Yalcin B, Leblebici Z, Aksoy A. Trace metal levels in edible wild fungi. Int J Environ Sci Technol. 2013;10:295–304. doi: 10.1007/s13762-012-0139-2. DOI
Sun L, Liu G, Yang M, Zhuang Y. Bioaccessibility of cadmium in fresh and cooked Agaricus blazei Murill assessed by in vitro biomimetic digestion system. Food Chem Toxicol. 2012;50:1729–1733. doi: 10.1016/j.fct.2012.02.044. PubMed DOI
Svoboda L, Kalač P, Špička J, Janoušková D. Leaching of cadmium, lead and mercury from fresh and differently preserved edible mushroom, Xerocomus badius, during soaking and boiling. Food Chem. 2002;79:41–45. doi: 10.1016/S0308-8146(02)00175-9. DOI
Svoboda L, Havlíčková B, Kalač P. Contents of cadmium, mercury and lead in edible mushrooms growing in a historical silver-mining area. Food Chem. 2006;96:580–585. doi: 10.1016/j.foodchem.2005.03.012. DOI
Wondratschek I, Röder U. Monitoring of heavy metals in soils by higher fungi. In: Markert B, editor. Plants as biomonitors. Indicators for heavy metals in the terrestrial environment. Weinheim: VCH; 1993. pp. 345–363.
Yin LL, Shi GQ, Tian Q, Shen T, Ji YQ, Zeng G. Determination of the metals by ICP-MS in wild mushrooms from Yunnan, China. J Food Sci. 2012;77:T151–T155. doi: 10.1111/j.1750-3841.2012.02810.x. PubMed DOI
Zeng X, Suwandi J, Fuller J, Doronilla A, Ng K. Antioxidant capacity and mineral contents of edible wild Australian mushrooms. Food Sci Technol Int. 2012;18:367–379. doi: 10.1177/1082013211427993. PubMed DOI
Zhang D, Frankowska A, Jarzyńska G, Kojta AK, Drewnowska M, Wydmańska D, Bielawski L, Wang J, Falandysz J. Metals of King Bolete (Boletus edulis) Bull.:Fr. collected at the same site over two years. Afr J Agric Res. 2010;5:3050–3055.
Zhu F, Qu L, Fan W, Qiao M, Hao H, Wang X. Assessment of heavy metals in some wild edible mushrooms collected from Yunnan Province, China. Environ Monit Assess. 2011;179:191–199. doi: 10.1007/s10661-010-1728-5. PubMed DOI