Contrasting evolutionary histories of the legless lizards slow worms (Anguis) shaped by the topography of the Balkan Peninsula
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu srovnávací studie, časopisecké články, práce podpořená grantem
PubMed
27165497
PubMed Central
PMC4863322
DOI
10.1186/s12862-016-0669-1
PII: 10.1186/s12862-016-0669-1
Knihovny.cz E-zdroje
- Klíčová slova
- Anguidae, Balkan mountains, Biogeography, Contact zones, Microrefugia, Phylogeography, Speciation, Squamata,
- MeSH
- biodiverzita MeSH
- fylogeneze MeSH
- fylogeografie MeSH
- ještěři genetika MeSH
- mitochondriální DNA genetika MeSH
- molekulární evoluce MeSH
- polymorfismus genetický MeSH
- tok genů MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH
- Geografické názvy
- Balkánský poloostrov MeSH
- Názvy látek
- mitochondriální DNA MeSH
BACKGROUND: Genetic architecture of a species is a result of historical changes in population size and extent of distribution related to climatic and environmental factors and contemporary processes of dispersal and gene flow. Population-size and range contractions, expansions and shifts have a substantial effect on genetic diversity and intraspecific divergence, which is further shaped by gene-flow limiting barriers. The Balkans, as one of the most important sources of European biodiversity, is a region where many temperate species persisted during the Pleistocene glaciations and where high topographic heterogeneity offers suitable conditions for local adaptations of populations. In this study, we investigated the phylogeographical patterns and demographic histories of four species of semifossorial slow-worm lizards (genus Anguis) present in the Balkan Peninsula, and tested the relationship between genetic diversity and topographic heterogeneity of the inhabited ranges. RESULTS: We inferred phylogenetic relationships, compared genetic structure and historical demography of slow worms using nucleotide sequence variation of mitochondrial DNA. Four Anguis species with mostly parapatric distributions occur in the Balkan Peninsula. They show different levels of genetic diversity. A signature of population growth was detected in all four species but with various courses in particular populations. We found a strong correlation between genetic diversity of slow-worm populations and topographic ruggedness of the ranges (mountain systems) they inhabit. Areas with more rugged terrain harbour higher genetic diversity. CONCLUSIONS: Phylogeographical pattern of the genus Anguis in the Balkans is concordant with the refugia-within-refugia model previously proposed for both several other taxa in the region and other main European Peninsulas. While slow-worm populations from the southern refugia mostly have restricted distributions and have not dispersed much from their refugial areas, populations from the extra-Mediterranean refugia in northern parts of the Balkans have colonized vast areas of eastern, central, and western Europe. Besides climatic historical events, the heterogeneous topography of the Balkans has also played an important role in shaping genetic diversity of slow worms.
Department of Zoology National Museum 193 00 Prague Czech Republic
Institute of Vertebrate Biology Czech Academy of Sciences 603 65 Brno Czech Republic
Zobrazit více v PubMed
Taberlet P, Fumagalli L, Wust-Saucy AG, Cosson JF. Comparative phylogeography and postglacial colonization routes in Europe. Mol Ecol. 1998;7:453–64. doi: 10.1046/j.1365-294x.1998.00289.x. PubMed DOI
Hewitt GM. Post-glacial re-colonization of European biota. Biol J Linn Soc. 1999;68:87–112. doi: 10.1111/j.1095-8312.1999.tb01160.x. DOI
Hewitt GM. The genetic legacy of the Quarternary ice ages. Nature. 2000;405:907–13. doi: 10.1038/35016000. PubMed DOI
Stewart JR, Lister AM, Barnes I, Dalén L. Refugia revisited: individualistic responses of species in space and time. Philos Trans R Soc Lond B Biol Sci. 2010;277:661–71. doi: 10.1098/rspb.2009.1272. PubMed DOI PMC
Schmitt T. Molecular biogeography of Europe: Pleistocene cycles and postglacial trends. Front Zool. 2007;4:11. doi: 10.1186/1742-9994-4-11. PubMed DOI PMC
Gaston KJ, David R. Hotspots across Europe. Biodiversity Letters. 1994;2:108–16. doi: 10.2307/2999714. DOI
Džukić G, Kalezić ML. The Biodiversity of Amphibians and Reptiles in the Balkan Peninsula. In: Griffiths HI, editor. Balkan Biodiversity. Kluwer Academic Publishers: Dordrecht; 2004. pp. 167–792.
Hewitt GM. Mediterranean Peninsulas: The Evolution of Hotspots. In: Zachos FE, Habel JC, editors. Biodiversity Hotspots. Springer Publishers: Berlin Heidelberg; 2011. pp. 123–47.
Schmitt T, Varga Z. Extra-Mediterranean refugia: The rule and not the exception? Front Zool. 2012;9:22. doi: 10.1186/1742-9994-9-22. PubMed DOI PMC
Ager DV. The geology of Europe. London: McGraw-Hill; 1980.
Reed JM, Kryštufek B, Eastwood WJ. The physical geography of the Balkans and nomenclature of place names. In: Griffiths HI, editor. Balkan Biodiversity. Dordrecht: Kluwer Academic Publishers; 2004. pp. 9–22.
McRae BH. Isolation by resistance. Evolution. 2006;60:1551–61. doi: 10.1111/j.0014-3820.2006.tb00500.x. PubMed DOI
Guarnizo CE, Cannatella DC. Genetic divergence within frog species is greater in topographically more complex regions. J Zool Sys Evol Res. 2013;51:333–40.
Gvoždík V, Jandzik D, Lymberakis P, Jablonski D, Moravec J. Slow Worm, Anguis fragilis (Reptilia: Anguidae) as a species complex: Genetic structure reveals deep divergences. Mol Phylogenet Evol. 2010;55:460–72. doi: 10.1016/j.ympev.2010.01.007. PubMed DOI
Gvoždík V, Benkovský N, Crottini A, Bellati A, Moravec J, Romano A, Sacchi R, Jandzik D. An ancient lineage of slow worms, genus Anguis (Squamata: Anguidae), survived in the Italian Peninsula. Mol Phylogenet Evol. 2013;69:1077–92. doi: 10.1016/j.ympev.2013.05.004. PubMed DOI
Szabó K, Vörös J. Distribution and hybridization of Anguis fragilis and A. colchica in Hungary. Amphibia-Reptilia. 2014;35:135–40. doi: 10.1163/15685381-00002927. DOI
Thanou E, Giokas S, Kornilios P. Phylogeography and genetic structure of the slow worms Anguis cephallonica and Anguis graeca (Squamata: Anguidae) from the southern Balkan Peninsula. Amphibia-Reptilia. 2014;35:263–9. doi: 10.1163/15685381-00002947. DOI
Dely OG. Anguis fragilis Linnaeus 1758 – Blindschleiche. In: Böhme W, editor. Handbuch der Reptilien und Amphibien Europas. Band 1. Echsen (Sauria) 1. Wiesbaden: AULA-Verlag; 1981. pp. 241–58.
Sillero N, Campos J, Bonardi A, Corti C, Creemers R, Crochet P-A, et al. Updated distribution and biogeography of amphibians and reptiles of Europe. Amphibia-Reptilia. 2014;35:1–31. doi: 10.1163/15685381-00002935. DOI
Stumpel AHP. Biometrical and ecological data from a Netherlands population of Anguis fragilis (Reptilia, Sauria, Anguidae) Amphibia-Reptilia. 1985;6:181–94. doi: 10.1163/156853885X00083. DOI
Hubble DS, Hurst DT. Population structure and translocation of the Slow-worm, Anguis fragilis L. Herpetological Bulletin. 2006;97:8–13.
Džukić G. Taxonomic and biogeographic characteristics of the slow-worm (Anguis fragilis Linnaeus, 1758) in Yugoslavia and on the Balcan Peninsula. Scopolia. 1987;12:1–47.
Stojanov A, Tzankov N, Naumov B. Die Amphibien und Reptilien Bulgariens. Frankfurt am Main: Edition Chimaira; 2011.
Librado P, Rozas J. DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics. 2009;25:1451–2. doi: 10.1093/bioinformatics/btp187. PubMed DOI
Lanfear R, Calcott B, Ho SYW, Guindon S. PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Mol Biol Evol. 2012;29:1695–701. doi: 10.1093/molbev/mss020. PubMed DOI
Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, et al. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol. 2012;61:539–42. doi: 10.1093/sysbio/sys029. PubMed DOI PMC
Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30:1312–3. doi: 10.1093/bioinformatics/btu033. PubMed DOI PMC
Rambaut A, Suchard MA, Xie W, Drummond A. Tracer v 1.6. 2013. http://beast.bio.ed.ac.uk/Tracer. Accessed 1 Feb 2016.
Posada D, Crandall KA. Intraspecific gene genealogies: trees grafting into networks. Trends Ecol Evol. 2001;16:37–45. doi: 10.1016/S0169-5347(00)02026-7. PubMed DOI
Clement M, Posada D, Crandall KA. TCS: a computer program to estimate gene genealogies. Mol Ecol. 2000;9:1657–9. doi: 10.1046/j.1365-294x.2000.01020.x. PubMed DOI
Drummond AJ, Rambaut A, Shapiro B, Pybus OG. Bayesian coalescent inference of past population dynamics from molecular sequences. Mol Biol Evol. 2005;22:1185–92. doi: 10.1093/molbev/msi103. PubMed DOI
Bouckaert R, Heled J, Kühner D, Vaughan T, Wu CH, Xie D, et al. BEAST 2: a software platform for Bayesian evolutionary analysis. PLoS Comput Biol. 2014;10 doi: 10.1371/journal.pcbi.1003537. PubMed DOI PMC
Macey RJ, Schulte JA, Larson A, Tuniyev BS, Orlov N, Papenfuss TJ. Molecular phylogenetics, tRNA evolution, and historical biogeography in Anguid lizards and related taxonomic families. Mol Phylogenet Evol. 1999;12:250–72. doi: 10.1006/mpev.1999.0615. PubMed DOI
Fu Y-X. Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics. 1997;147:913–25. PubMed PMC
Tajima F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics. 1989;123:585–95. PubMed PMC
Ramos-Onsins SE, Rozas J. Statistical properties of new neutrality tests against population growth. Mol Biol Evol. 2002;19:2092–100. doi: 10.1093/oxfordjournals.molbev.a004034. PubMed DOI
Riley SJ, DeGloria SD, Elliot R. A terrain ruggedness index that quantifies topographic heterogeneity. Intermt J Sci. 1999;5:23–7.
GRASS Development Team. Geographic Resources Analysis Support System (GRASS) Software, Version 7.0. 2015. Open Source Geospatial Foundation. http://grass.osgeo.org. Accessed 1 February 2016.
Magri D, Vendramin GG, Comps B, Dupanloup I, Geburek T, Gömöry D, et al. A new scenario for the Quaternary history of European beech populations: palaeobotanical evidence and genetic consequences. New Phytol. 2006;171:199–221. doi: 10.1111/j.1469-8137.2006.01740.x. PubMed DOI
Bálint M, Ujvárosi L, Theissinger K, Lehrian S, Mészáros N, Pauls SU. The Carpathians as a Major Diversity Hotspot in Europe. In: Zachos FE, Habel JC, editors. Biodiversity Hotspots. Berlin Heidelberg: Springer Publishers; 2011. pp. 189–205.
Hill T, Lewicki P. STATISTICA: Methods and Applications. Tulsa: StatSoft; 2007.
Grillitsch H, Cabela A. Zum systematischen Status der Blindschleichen (Squamata: Anguidae) der Peloponnes und der südlichen Ionischen Inseln (Griechenland) Herpetozoa. 1990;2:131–53.
Mayer W, Grillitsch H, Cabela A. Proteinelektrophoretische Untersuchungen zur Systematik der südgriechischen Blindschleiche (Squamata: Anguidae) Herpetozoa. 1991;4:157–65.
Cabela A, Grillitsch H. Zum systematischen Status der Blindschleiche (Anguis fragilis Linnaeus, 1758) von Nordgriechenland und Albanien (Squamata: Anguidae) Herpetozoa. 1989;2:51–69.
Lymberakis P, Poulakakis N. Three Continents Claiming an Archipelago: The Evolution of Aegean’s Herpetofaunal Diversity. Diversity. 2010;10:233–55. doi: 10.3390/d2020233. DOI
Gómez A, Lunt DH. Refugia within refugia: Patterns of phylogeographic concordance in the Iberian Peninsula. Phylogeography in Southern European Refugia. In: Weiss S, Ferrand N, editors. Evolutionary Perspectives on Origins and Conservation of European Biodiversity. Dordrech: Springer Publishers; 2007. pp. 155–88.
Ursenbacher S, Schweiger S, Tomović L, Crnobrnja-Isailović J, Fumagalli L, Mayer W. Molecular phylogeography of the nose-horned viper (Vipera ammodytes, Linnaeus (1758)): Evidence for high genetic diversity and multiple refugia in the Balkan peninsula. Mol Phylogenet Evol. 2008;46:1116–28. doi: 10.1016/j.ympev.2007.11.002. PubMed DOI
Podnar M, Mađarić BB, Mayer W. Non-concordant phylogeographical patterns of three widely codistributed endemic Western Balkans lacertid lizards (Reptilia, Lacertidae) shaped by specific habitat requirements and different responses to Pleistocene climatic oscillations. J Zool Syst Evol Res. 2014;52:119–29. doi: 10.1111/jzs.12056. DOI
Pabijan M, Zieliński P, Dudek K, Chloupek M, Sotiropoulos K, Liana M, Babik W. The dissection of a Pleistocene refugium: phylogeography of the smooth newt, Lissotriton vulgaris, in the Balkans. J Biogeogr. 2015;42:671–83. doi: 10.1111/jbi.12449. DOI
Kramp K, Huck S, Niketić M, Tomović G, Schmitt T. Multiple glacial refugia and complex postglacial range shifts of the obligatory woodland plant Polygonatum verticillatum (Convallariaceae) Plant Biol. 2009;11:392–404. doi: 10.1111/j.1438-8677.2008.00130.x. PubMed DOI
Surina B, Schonswetter P, Schneeweiss GM. Quaternary range dynamics of ecologically divergent species (Edraianthus serpyllifolius and E. tenuifolius, Campanulaceae) within the Balkan refugium. J Biogeogr. 2011;38:1381–93. doi: 10.1111/j.1365-2699.2011.02493.x. DOI
Medail F, Diadema K. Glacial refugia influence plant diversity patterns in the Mediterranean Basin. J Biogeogr. 2009;36:1333–45. doi: 10.1111/j.1365-2699.2008.02051.x. DOI
Provan J, Bennett KD. Phylogeographic insights into cryptic glacial refugia. Trends Ecol Evol. 2008;23:564–71. doi: 10.1016/j.tree.2008.06.010. PubMed DOI
Excoffier L, Foll M, Petit RJ. Genetic consequences of range expansions. Annu Rev Ecol Evol Syst. 2009;40:481–501. doi: 10.1146/annurev.ecolsys.39.110707.173414. DOI
Deffontaine V, Libois R, Kotlík P, Sommer R, Nieberding C, Paradis E, et al. Beyond the Mediterranean peninsulas: evidence of central European glacial refugia for a temperate forest mammal species, the bank vole (Clethrionomys glareolus) Mol Ecol. 2005;14:1727–39. doi: 10.1111/j.1365-294X.2005.02506.x. PubMed DOI
Kotlík P, Deffontaine V, Mascheretti S, Zima J, Michaux JR, Searle JB. A northern glacial refugium for bank voles (Clethrionomys glareolus) Proc Natl Acad Sci U S A. 2006;103:14860–4. doi: 10.1073/pnas.0603237103. PubMed DOI PMC
Kryštufek B, Bužan EV, Hutchinson WF, Hanfling B. Phylogeography of the rare Balkan endemic Martino’s vole, Dinaromys bogdanovi, reveals strong differentiation within the western Balkan Peninsula. Mol Ecol. 2007;16:1221–32. doi: 10.1111/j.1365-294X.2007.03235.x. PubMed DOI
Canestrelli D, Cimmaruta R, Nascetti G. Phylogeography and historical demography of the Italian treefrog Hyla intermedia reveals multiple refugia, range expansions and secondary contacts within the Italian peninsula. Mol Ecol. 2007;16:4808–21. doi: 10.1111/j.1365-294X.2007.03534.x. PubMed DOI
Canestrelli D, Salvi D, Maura M, Bologna MA, Nascetti G. One species, three Pleistocene evolutionary histories: Phylogeography of the Italian crested newt, Triturus carnifex. PLoS One. 2012;7:e41754. doi: 10.1371/journal.pone.0041754. PubMed DOI PMC
Sotiropoulos K, Eleftherakos K, Džukić G, Kalezić ML, Legakis A, Polymeni RM. Phylogeny and biogeography of the alpine newt Mesotriton alpestris (Salamandridae, Caudata), inferred from mtDNA sequences. Mol Phylogenet Evol. 2007;45:211–26. doi: 10.1016/j.ympev.2007.03.012. PubMed DOI
Crottini A, Andreone F, Kosuch J, Borkin LJ, Litvinchuk SN, Eggert C, Veith M. Fossorial but widespread: the phylogeography of the common spadefoot toad (Pelobates fuscus), and the role of the Po Valley as a major source of genetic variability. Mol Ecol. 2007;16:2734–54. doi: 10.1111/j.1365-294X.2007.03274.x. PubMed DOI
Canestrelli D, Nascetti G. Phylogeography of the pond frog Rana (Pelophylax) lessonae in the Italian peninsula and Sicily: multiple refugia, glacial expansions and nuclear-mitochondrial discordance. J Biogeogr. 2008;35:1923–36. doi: 10.1111/j.1365-2699.2008.01946.x. DOI
Salvi D, Harris DJ, Kaliontzopoulou A, Carretero MA, Pinho C. Persistence across Pleistocene ice ages in Mediterranean and extra-Mediterranean refugia: phylogeographic insights from the common wall lizard. BMC Evol Biol. 2013;13:147. doi: 10.1186/1471-2148-13-147. PubMed DOI PMC
Kindler C, Böhme W, Corti C, Gvoždík V, Jablonski D, Jandzik D, et al. Mitochondrial phylogeography, contact zones and taxonomy of grass snakes (Natrix natrix, N. megalocephala) Zool Scripta. 2013;42:458–72. doi: 10.1111/zsc.12018. DOI
Maura M, Salvi D, Bologna MA, Nascetti G, Canestrelli D. Northern richness and cryptic refugia: Phylogeography of the Italian smooth newt Lissotriton vulgaris meridionalis. Biol J Linn Soc. 2014;113:590–603. doi: 10.1111/bij.12360. DOI
Stojak J, Mcdevitt AD, Herman JS, Searle JB, Wójcik JM. Post-glacial colonization of eastern Europe from the Carpathian refugium: evidence from mitochondrial DNA of the common vole Microtus arvalis. Biol J Linn Soc. 2015;115:927–39. doi: 10.1111/bij.12535. DOI
Wielstra B, Babik W, Arntzen JW. The crested newt Triturus cristatus recolonized temperate Eurasia from an extra-Mediterranean glacial refugium. Biol J Linn Soc. 2015;115:574–87. doi: 10.1111/bij.12446. DOI
Reuther AU, Urdea P, Geiger C, Ivy-Ochs S, Niller H-P, Kubik PW, Heine K. Late Pleistocene glacial chronology of the Pietrele Valley, Retezat Mountains, Southern Carpathians constrained by 10Be exposure ages and pedological investigations. Quatern Int. 2007;164–165:151–69. doi: 10.1016/j.quaint.2006.10.011. DOI
Babik W, Branicki W, Crnobrnja-Isailović J, Cogălniceanu D, Sas I, Olgun K, et al. Phylogeography of two European newt species – discordance between mtDNA and morphology. Mol Ecol. 2005;14:2475–91. doi: 10.1111/j.1365-294X.2005.02605.x. PubMed DOI
Fijarczyk A, Nadachowska K, Hofman S, Litvinchuk SN, Babik W, Stuglik M, et al. Nuclear and mitochondrial phylogeography of the European fire-bellied toads Bombina bombina and Bombina variegata supports their independent histories. Mol Ecol. 2011;20:3381–98. doi: 10.1111/j.1365-294X.2011.05175.x. PubMed DOI
Wójcik JM, Kawałko A, Marková S, Searle JB, Kotlík P. Phylogeographic signatures of northward post-glacial colonization from high-latitude refugia: a case study of bank voles using museum specimens. J Zool. 2010;281:249–62.
Kerey IE, Meric E, Tunoglu C, Kelling G, Brenner RL, Dogan AU. Black Sea–Marmara Sea Quaternary connections: new data from the Bosphorus, Istanbul, Turkey. Palaeogeogr Palaeoclimatol Palaeoecol. 2004;204:277–95. doi: 10.1016/S0031-0182(03)00731-4. DOI
Wielstra B, Espregueira Themudo G, Güçlü Ö, Olgun K, Poyarkov NA, Arntzen JW. Cryptic crested newt diversity at the Eurasian transition: The mitochondrial DNA phylogeography of Near Eastern Triturus newts. Mol Phylogenet Evol. 2010;56:888–96. doi: 10.1016/j.ympev.2010.04.030. PubMed DOI
Jesse R, Shubart CD, Klaus S. Identification of cryptic lineage within Potamon fluviatile (Herbst) (Crustacea: Brachyura: Potamidae) Invertebrate Systematics. 2010;24:348–56. doi: 10.1071/IS10014. DOI
Ferchaud A-L, Ursenbacher S, Cheylan M, Luiselli L, Jelić D, Halpern B, et al. Phylogeography of the Vipera ursinii complex (Viperidae): mitochondrial markers reveal an east–west disjunction in the Palaearctic region. J Biogeogr. 2012;39:1836–47. doi: 10.1111/j.1365-2699.2012.02753.x. DOI
Poulakakis N, Kapli P, Lymberakis P, Trichas A, Vardinoyiannis K, Sfenthourakis S, Mylonas M. A review of phylogeographic analyses of animal taxa from the Aegean and surrounding regions. J Zool Sys Evol Res. 2015;53:18–32. doi: 10.1111/jzs.12071. DOI
Haley T. A metapopulation of the lizard Anguis fragilis (Squamata: Anguidae) on a local scale in Dorset, Great Britain, as indicated by spatial distribution and movement. Phyllomedusa. 2014;13:91–8. doi: 10.11606/issn.2316-9079.v13i2p91-98. DOI
Mittermeier RA, Gil PR, Hoffmann M, Pilgrim J, Brooks T, Mittermeier CG, Lamoreux J, da Fonseca GAB. Hotspots Revisited: Earth’s Biologically Richest and Most Endangered Terrestrial Ecoregions, Conservation International. Washington: The University of Chicago Press; 2005.
Orme C, Davies R, Burgess M, Eigenbrod F, Pickup N, Olson VA, et al. Global hotspots of species richness are not congruent with endemism or threat. Nature. 2005;436:1016–9. doi: 10.1038/nature03850. PubMed DOI
Rull V. Biotic diversification in the Guayana Highlands: a proposal. J Biogeogr. 2005;32:921–7. doi: 10.1111/j.1365-2699.2005.01252.x. DOI
Meegaskumbura M, Bossuyt F, Pethiyagoda R, Manamendra-Arachchi K, Bahir M, Milinkovitch MC, Schneider CJ. Sri Lanka: An Amphibian Hot Spot. Science. 2002;298:379. doi: 10.1126/science.298.5592.379. PubMed DOI
Mittermeier RA, Myers N, Thomsen JB, Da Fonseca GA, Olivieri S. Biodiversity hotspots and major tropical wilderness areas: approaches to setting conservation priorities. Conserv Biol. 1998;12:516–20. doi: 10.1046/j.1523-1739.1998.012003516.x. DOI
Funk WC, Blouin MS, Corn PS, Maxell BA, Pilliod DS, Amish S, Allendorf FW. Population structure of Columbia spotted frogs (Rana luteiventris) is strongly affected by the landscape. Mol Ecol. 2005;14:483–96. doi: 10.1111/j.1365-294X.2005.02426.x. PubMed DOI
Giordano AR, Ridenhour BJ, Storfer A. The influence of altitude and topography on genetic structure in the long-toed salamander (Ambystoma macrodactylum) Mol Ecol. 2007;16:1625–37. doi: 10.1111/j.1365-294X.2006.03223.x. PubMed DOI
Badgley C. Tectonics, topography, and mammalian diversity. Ecography. 2010;33:220–31.
Rodríguez A, Börner M, Pabijan M, Gehara M, Haddad CFB, Vences M. Genetic divergence in tropical anurans: deeper phylogeographic structure in forest specialists and in topographically complex regions. Evol Ecol. 2015;29:765–85. doi: 10.1007/s10682-015-9774-7. DOI