Pleiotropic effect of anionic phospholipids absence on mitochondrial morphology and cell wall integrity in strictly aerobic Kluyveromyces lactis yeasts
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
27169884
DOI
10.1007/s12223-016-0463-x
PII: 10.1007/s12223-016-0463-x
Knihovny.cz E-zdroje
- MeSH
- aerobióza MeSH
- buněčná stěna chemie ultrastruktura MeSH
- delece genu MeSH
- fluorescenční mikroskopie MeSH
- fosfolipidy nedostatek MeSH
- glukany analýza MeSH
- Kluyveromyces cytologie genetika růst a vývoj metabolismus MeSH
- mitochondrie ultrastruktura MeSH
- teplota MeSH
- transmisní elektronová mikroskopie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- fosfolipidy MeSH
- glukany MeSH
Cardiolipin and phosphatidylglycerol are anionic phospholipids localized to the inner mitochondrial membrane. In this study, it is demonstrated by fluorescence and transmission electron microscopy that atp2.1pgs1Δ mutant mitochondria lacking anionic phospholipids contain fragmented and swollen mitochondria with a completely disorganized inner membrane. In the second part of this study, it was shown that the temperature sensitivity of the atp2.1pgs1Δ mutant was not suppressed by the osmotic stabilizer glucitol but by glucosamine, a precursor of chitin synthesis. The atp2.1pgs1Δ mutant was hypersensitive to Calcofluor White and caffeine, resistant to Zymolyase, but its sensitivity to caspofungin was the same as the strains with the standard PGS1 gene. The distribution of chitin in the mutant cell wall was impaired. The glucan level in the cell wall of the atp2.1pgs1Δ mutant was reduced by 4-8 %, but the level of chitin was almost double that in the wild-type strain. The cell wall of the atp2.1pgs1Δ mutant was about 20 % thinner than the wild type, but its morphology was not significantly altered.
Zobrazit více v PubMed
Biochim Biophys Acta. 2009 Oct;1788(10):2080-3 PubMed
FEBS Lett. 2006 Oct 9;580(23):5450-5 PubMed
Nat Genet. 1996 Apr;12(4):385-9 PubMed
Hum Mol Genet. 2008 Jan 15;17(2):201-14 PubMed
FEBS Lett. 1974 Jun 15;42(3):309-13 PubMed
Eur J Biochem. 2002 Mar;269(6):1697-707 PubMed
Cell. 2013 Sep 26;155(1):160-71 PubMed
Can J Microbiol. 2012 Jun;58(6):694-702 PubMed
J Bacteriol. 1997 Jan;179(2):463-9 PubMed
FEMS Microbiol Lett. 1996 Jun 15;140(1):43-7 PubMed
J Biol Chem. 1998 Apr 17;273(16):9829-36 PubMed
Subcell Biochem. 2008;49:197-239 PubMed
J Biol Chem. 1955 Dec;217(2):959-66 PubMed
Biochemistry. 2007 Nov 6;46(44):12579-85 PubMed
FEMS Microbiol Rev. 2002 Aug;26(3):239-56 PubMed
Biochim Biophys Acta. 2009 Oct;1788(10):2084-91 PubMed
EMBO J. 2001 Dec 3;20(23):6591-600 PubMed
FEMS Yeast Res. 2010 Sep;10(6):727-34 PubMed
J Cell Biol. 1980 May;85(2):199-212 PubMed
FEBS Lett. 2005 Nov 7;579(27):6031-6 PubMed
Mol Gen Genet. 1996 Oct 28;252(6):746-50 PubMed
Biochemistry. 2006 Jan 24;45(3):746-54 PubMed
Curr Opin Microbiol. 1999 Aug;2(4):348-52 PubMed
Curr Genet. 1993 Oct;24(4):307-12 PubMed
Lett Appl Microbiol. 2003;37(3):268-74 PubMed
J Biol Chem. 2003 Dec 26;278(52):52873-80 PubMed
Biochem J. 2000 May 1;347 Pt 3:687-91 PubMed
FEMS Yeast Res. 2004 Oct;5(1):19-27 PubMed
Yeast. 1998 Oct;14(14):1297-306 PubMed
Genetics. 1997 Oct;147(2):435-50 PubMed
Exp Neurol. 2000 Mar;162(1):37-50 PubMed
EMBO J. 2002 Feb 1;21(3):221-30 PubMed
Biochim Biophys Acta. 2009 Jan;1793(1):5-19 PubMed
Microbiology. 2000 Sep;146 ( Pt 9):2121-32 PubMed
Yeast. 2000 Sep 15;16(12):1161-71 PubMed
Mol Biol Cell. 2005 Feb;16(2):665-75 PubMed