• This record comes from PubMed

Joint analysis of histopathology image features and gene expression in breast cancer

. 2016 May 11 ; 17 (1) : 209. [epub] 20160511

Language English Country England, Great Britain Media electronic

Document type Journal Article

Links

PubMed 27170365
PubMed Central PMC4864935
DOI 10.1186/s12859-016-1072-z
PII: 10.1186/s12859-016-1072-z
Knihovny.cz E-resources

BACKGROUND: Genomics and proteomics are nowadays the dominant techniques for novel biomarker discovery. However, histopathology images contain a wealth of information related to the tumor histology, morphology and tumor-host interactions that is not accessible through these techniques. Thus, integrating the histopathology images in the biomarker discovery workflow could potentially lead to the identification of new image-based biomarkers and the refinement or even replacement of the existing genomic and proteomic signatures. However, extracting meaningful and robust image features to be mined jointly with genomic (and clinical, etc.) data represents a real challenge due to the complexity of the images. RESULTS: We developed a framework for integrating the histopathology images in the biomarker discovery workflow based on the bag-of-features approach - a method that has the advantage of being assumption-free and data-driven. The images were reduced to a set of salient patterns and additional measurements of their spatial distribution, with the resulting features being directly used in a standard biomarker discovery application. We demonstrated this framework in a search for prognostic biomarkers in breast cancer which resulted in the identification of several prognostic image features and a promising multimodal (imaging and genomic) prognostic signature. The source code for the image analysis procedures is freely available. CONCLUSIONS: The framework proposed allows for a joint analysis of images and gene expression data. Its application to a set of breast cancer cases resulted in image-based and combined (image and genomic) prognostic scores for relapse-free survival.

See more in PubMed

Hamilton PW, Bankhead P, Wang Y, Hutchinson R, Kieran D, McArt DG, James J, Salto-Tellez M. Digital pathology and image analysis in tissue biomarker research. Methods. 2014;70(1):59–73. doi: 10.1016/j.ymeth.2014.06.015. PubMed DOI

Colen R, Foster I, Gatenby R, Giger ME, Gillies R, Gutman D, Heller M, Jain R, Madabhushi A, Madhavan S, Napel S, Rao A, Saltz J, Tatum J, Verhaak R, Whitman G. NCI Workshop Report: Clinical and Computational Requirements for Correlating Imaging Phenotypes with Genomics Signatures. Transl Oncol. 2014;7(5):556–69. doi: 10.1016/j.tranon.2014.07.007. PubMed DOI PMC

Gurcan MN, Boucheron LE, Can A, Madabhushi A, Rajpoot NM, Yener B. Histopathological image analysis: a review. IEEE Rev Biomed Eng. 2009;2:147–71. doi: 10.1109/RBME.2009.2034865. PubMed DOI PMC

Yuan Y, Failmezger H, Rueda OM, Ali HR, Graf S, Chin SF, Schwarz RF, Curtis C, Dunning MJ, Bardwell H, Johnson N, Doyle S, Turashvili G, Provenzano E, Aparicio S, Caldas C, Markowetz F. Quantitative Image Analysis of Cellular Heterogeneity in Breast Tumors Complements Genomic Profiling. Sci Transl Med. 2012;4(157):143. doi: 10.1126/scitranslmed.3004330. PubMed DOI

Kong J, Cooper LAD, Wang F, Gutman DA, Gao J, Chisolm C, Sharma A, Pan T, Van Meir EG, Kurc TM, Moreno CS, Saltz JH, Brat DJ. Integrative, multimodal analysis of glioblastoma using TCGA molecular data, pathology images, and clinical outcomes. IEEE Trans Biomed Eng. 2011;58(12):3469–74. doi: 10.1109/TBME.2011.2169256. PubMed DOI PMC

Nawaz S, Heindl A, Koelble K, Yuan Y. Beyond immune density: critical role of spatial heterogeneity in estrogen receptor-negative breast cancer. Mod Pathol. 2015;28(6):766–77. doi: 10.1038/modpathol.2015.37. PubMed DOI

Csurka G, Dance CR, Fan L, Willamowski J, Bray C. Visual categorization with bags of keypoints. Work Stat Learn Comput Vision ECCV. 2004:59–74.

Caicedo JC, Cruz A, Gonzalez FA. Histopathology Image Classification Using Bag of Features and Kernel Functions. In: Combi C, Shahar Y, Abu-Hanna A, editors. 12th Conference on Artificial Intelligence in Medicine. Berlin Heidelberg: Springer; 2009.

Budinská E, Čápková L, Schwarz D, Dušek L, Jaggi R, Feit J, Popovici V. 15th International Conference on Bioinformatics and Bioengineering. Belgrade: IEEE; 2015. Gene expression-guided selection of histopathology image features.

Cireşan DC, Giusti A, Gambardella LM, Schmidhuber J. International Conference on Medical Image Computing and Computer-assisted Intervention. Berlin Heidelberg: Springer; 2013. Mitosis detection in breast cancer histology images with deep neural networks. PubMed

Cruz-Roa A, Basavanhally A, González F, Gilmore H, Feldman M, Ganesan S, Shih N, Tomaszewski J, Madabhushi A. Automatic detection of invasive ductal carcinoma in whole slide images with convolutional neural networks. In: Gurcan MN, Madabhushi A, editors. SPIE Medical Imaging. San Diego, USA: SPIE; 2014.

Moor AE, Guevara C, Altermatt HJ, Warth R, Jaggi R, Aebi S. PRO_10 – A new tissue-based prognostic multigene marker in patients with early estrogen receptor-positive breast cancer. Pathobiology. 2011;78(3):140–8. doi: 10.1159/000323809. PubMed DOI

Antonov J, Popovici V, Delorenzi M, Wirapati P, Baltzer A, Oberli A, Thurlimann B, Giobbie-Hurder A, Viale G, Altermatt H, Aebi S, Jaggi R. Molecular risk assessment of BIG 1-98 participants by expression profiling using RNA from archival tissue. BMC Cancer. 2010;10(1):37. doi: 10.1186/1471-2407-10-37. PubMed DOI PMC

Ruifrok AC, Johnston DA. Quantification of histochemical staining by color deconvolution. Anal Quant Cytol Histol. 2001;23(4):291–9. PubMed

Daugman JG. Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters. J Opt Soc Am A. 1985. PubMed

Tibshirani R, Walther G, Hastie T. Estimating the number of clusters in a data set via the gap statistic. J R Stat Soc Ser B Stat Methodol. 2001.

Shawe-Taylor J, Cristianini N. Kernel Methods for Pattern Analysis. Cambridge, UK: Cambridge University Press; 2004.

McFee B, Lanckriet GRG. Learning Multi-modal Similarity. J Mach Learn Res. 2011;12:491–523.

van der Walt S, Schönberger JL, Nunez-Iglesias J, Boulogne F, Warner JD, Yager N, Gouillart E, Yu T, Scikit-image contributors scikit-image: image processing in Python. PeerJ. 2014;2:e453. doi: 10.7717/peerj.453. PubMed DOI PMC

Coelho LP. Mahotas: Open source software for scriptable computer vision. J Open Res Softw. 2013;1(1):e3. doi: 10.5334/jors.ac. DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...