Structure of a Berberine Bridge Enzyme-Like Enzyme with an Active Site Specific to the Plant Family Brassicaceae

. 2016 ; 11 (6) : e0156892. [epub] 20160608

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid27276217

Berberine bridge enzyme-like (BBE-like) proteins form a multigene family (pfam 08031), which is present in plants, fungi and bacteria. They adopt the vanillyl alcohol-oxidase fold and predominantly show bi-covalent tethering of the FAD cofactor to a cysteine and histidine residue, respectively. The Arabidopsis thaliana genome was recently shown to contain genes coding for 28 BBE-like proteins, while featuring four distinct active site compositions. We determined the structure of a member of the AtBBE-like protein family (termed AtBBE-like 28), which has an active site composition that has not been structurally and biochemically characterized thus far. The most salient and distinguishing features of the active site found in AtBBE-like 28 are a mono-covalent linkage of a histidine to the 8α-position of the flavin-isoalloxazine ring and the lack of a second covalent linkage to the 6-position, owing to the replacement of a cysteine with a histidine. In addition, the structure reveals the interaction of a glutamic acid (Glu426) with an aspartic acid (Asp369) at the active site, which appear to share a proton. This arrangement leads to the delocalization of a negative charge at the active site that may be exploited for catalysis. The structure also indicates a shift of the position of the isoalloxazine ring in comparison to other members of the BBE-like family. The dioxygen surrogate chloride was found near the C(4a) position of the isoalloxazine ring in the oxygen pocket, pointing to a rapid reoxidation of reduced enzyme by dioxygen. A T-DNA insertional mutant line for AtBBE-like 28 results in a phenotype, that is characterized by reduced biomass and lower salt stress tolerance. Multiple sequence analysis showed that the active site composition found in AtBBE-like 28 is only present in the Brassicaceae, suggesting that it plays a specific role in the metabolism of this plant family.

Zobrazit více v PubMed

Macheroux P, Kappes B, Ealick SE. Flavogenomics—A genomic and structural view of flavin-dependent proteins. FEBS Journal. 2011. pp. 2625–2634. 10.1111/j.1742-4658.2011.08202.x PubMed DOI

Winkler A, Hartner F, Kutchan TM, Glieder A, Macheroux P. Biochemical evidence that berberine bridge enzyme belongs to a novel family of flavoproteins containing a bi-covalently attached FAD cofactor. J Biol Chem. 2006;281: 21276–21285. 10.1074/jbc.M603267200 PubMed DOI

Winkler A, Motz K, Riedl S, Puhl M, Macheroux P, Gruber K. Structural and mechanistic studies reveal the functional role of bicovalent flavinylation in berberine bridge enzyme. J Biol Chem. 2009;284: 19993–20001. 10.1074/jbc.M109.015727 PubMed DOI PMC

Facchini PJ, Penzes C, Johnson AG, Bull D. Molecular characterization of berberine bridge enzyme genes from opium poppy. Plant Physiol. 1996;112: 1669–1677. 10.1104/pp.112.4.1669 PubMed DOI PMC

Attila C, Ueda A, Cirillo SLG, Cirillo JD, Chen W, Wood TK. Pseudomonas aeruginosa PAO1 virulence factors and poplar tree response in the rhizosphere. Microb Biotechnol. 2008;1: 17–29. 10.1111/j.1751-7915.2007.00002.x PubMed DOI PMC

González-Candelas L, Alamar S, Sánchez-Torres P, Zacarías L, Marcos JF. A transcriptomic approach highlights induction of secondary metabolism in citrus fruit in response to Penicillium digitatum infection. BMC Plant Biol. 2010;10: 194 10.1186/1471-2229-10-194 PubMed DOI PMC

Coram T, Huang X, Zhan G, Settles M, Chen X. Meta-analysis of transcripts associated with race-specific resistance to stripe rust in wheat demonstrates common induction of blue copper-binding protein, heat-stress transcription factor, pathogen-induced WIR1A protein, and ent-kaurene synthase transcri. Funct Integr Genomics. Springer-Verlag; 2010;10: 383–392. 10.1007/s10142-009-0148-5 PubMed DOI

Zhang J, Feng J, Lu J, Yang Y, Zhang X, Wan D, et al. Transcriptome differences between two sister desert poplar species under salt stress. BMC Genomics. 2014;15: 337 10.1186/1471-2164-15-337 PubMed DOI PMC

Daniel B, Pavkov-Keller T, Steiner B, Dordic A, Gutmann A, Nidetzky B, et al. Oxidation of Monolignols by Members of the Berberine Bridge Enzyme Family Suggests a Role in Cell Wall Metabolism. J Biol Chem. 2015;290: 18770–18781. 10.1074/jbc.M115.659631 PubMed DOI PMC

Jamet E, Canut H, Boudart G, Pont-Lezica RF. Cell wall proteins: A new insight through proteomics. Trends in Plant Science. 2006. pp. 33–39. 10.1016/j.tplants.2005.11.006 PubMed DOI

Seidl MF, Van den Ackerveken G, Govers F, Snel B. A domain-centric analysis of oomycete plant pathogen genomes reveals unique protein organization. Plant Physiol. 2011;155: 628–644. 10.1104/pp.110.167841 PubMed DOI PMC

Raffaele S, Win J, Cano LM, Kamoun S. Analyses of genome architecture and gene expression reveal novel candidate virulence factors in the secretome of Phytophthora infestans. BMC Genomics. 2010;11: 637 10.1186/1471-2164-11-637 PubMed DOI PMC

Morais do Amaral A, Antoniw J, Rudd JJ, Hammond-Kosack KE. Defining the Predicted Protein Secretome of the Fungal Wheat Leaf Pathogen Mycosphaerella graminicola. PLoS One. 2012;7 10.1371/journal.pone.0049904 PubMed DOI PMC

Krieger E, Koraimann G, Vriend G. Increasing the precision of comparative models with YASARA NOVA—A self-parameterizing force field. Proteins Struct Funct Genet. 2002;47: 393–402. 10.1002/prot.10104 PubMed DOI

Zafred D, Steiner B, Teufelberger AR, Hromic A, Karplus PA, Schofield CJ, et al. Rationally engineered flavin-dependent oxidase reveals steric control of dioxygen reduction. FEBS J. 2015;282: 3060–3074. 10.1111/febs.13212 PubMed DOI

Massey V, Hemmerich P. Photoreduction of flavoproteins and other biological compounds catalyzed by deazaflavins. Biochemistry. 1978;17: 9–16. 10.1021/bi00594a002 PubMed DOI

Mayhew SG. The effects of pH and semiquinone formation on the oxidation-reduction potentials of flavin mononucleotide. A reappraisal. Eur J Biochem. 1999;265: 698–702. 10.1046/j.1432-1327.1999.00767.x PubMed DOI

Winkler A, Kutchan TM, Macheroux P. 6-S-cysteinylation of bi-covalently attached FAD in berberine bridge enzyme tunes the redox potential for optimal activity. J Biol Chem. 2007;282: 24437–24443. 10.1074/jbc.M703642200 PubMed DOI

Massey V. Activation of molecular oxygen by flavins and flavoproteins. Journal of Biological Chemistry. 1994. pp. 22459–22462. PubMed

Minnaert K. Measurement of the equilibrium constant of the reaction between cytochrome c and cytochrome a. Biochim Biophys Acta—Enzymol Biol Oxid. 1965;110: 42–56. 10.1016/S0926-6593(65)80093-5 PubMed DOI

Winter D, Vinegar B, Nahal H, Ammar R, Wilson G V., Provart NJ. An “electronic fluorescent pictograph” Browser for exploring and analyzing large-scale biological data sets. PLoS One. 2007;2 10.1371/journal.pone.0000718 PubMed DOI PMC

Goodstein DM, Shu S, Howson R, Neupane R, Hayes RD, Fazo J, et al. Phytozome: A comparative platform for green plant genomics. Nucleic Acids Res. 2012;40 10.1093/nar/gkr944 PubMed DOI PMC

Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Molecular Systems Biology. 2011. 10.1038/msb.2011.75 PubMed DOI PMC

Felsenstein J. Phylip: phylogeny inference package (version 3.2). Cladistics. 1989;5: 164–166.

Ishida M, Hara M, Fukino N, Kakizaki T, Morimitsu Y. Glucosinolate metabolism, functionality and breeding for the improvement of Brassicaceae vegetables. Breed Sci. 2014;64: 48–59. 10.1270/jsbbs.64.48 PubMed DOI PMC

Glawischnig E. Camalexin. Phytochemistry. 2007. pp. 401–406. 10.1016/j.phytochem.2006.12.005 PubMed DOI

Liu Y-C, Li Y-S, Lyu S-Y, Hsu L-J, Chen Y-H, Huang Y-T, et al. Interception of teicoplanin oxidation intermediates yields new antimicrobial scaffolds. Nat Chem Biol. 2011;7: 304–309. 10.1038/nchembio.556 PubMed DOI

Winkler A, Lyskowski A, Riedl S, Puhl M, Kutchan TM, Macheroux P, et al. A concerted mechanism for berberine bridge enzyme. Nat Chem Biol. 2008;4: 739–741. 10.1038/nchembio.123 PubMed DOI

Sirikantaramas S, Morimoto S, Shoyama Y, Ishikawa Y, Wada Y, Shoyama Y, et al. The gene controlling marijuana psychoactivity: molecular cloning and heterologous expression of Delta1-tetrahydrocannabinolic acid synthase from Cannabis sativa L. J Biol Chem. 2004;279: 39767–39774. 10.1074/jbc.M403693200 PubMed DOI

Lorenz N, Olšovská J, Šulc M, Tudzynski P. Alkaloid cluster gene ccsA of the ergot fungus Claviceps purpurea encodes chanoclavine I synthase, a flavin adenine dinucleotide-containing oxidoreductase mediating the transformation of N-methyl-dimethylallyltryptophan to chanoclavine I. Appl Environ Microbiol. 2010;76: 1822–1830. 10.1128/AEM.00737-09 PubMed DOI PMC

Lin H-C, Chiou G, Chooi Y-H, McMahon TC, Xu W, Garg NK, et al. Elucidation of the Concise Biosynthetic Pathway of the Communesin Indole Alkaloids. Angew Chemie Int Ed. WILEY-VCH Verlag; 2015;54: 3004–3007. 10.1002/anie.201411297 PubMed DOI PMC

Fraaije MW, Mattevi A. Flavoenzymes: Diverse catalysts with recurrent features. Trends in Biochemical Sciences. 2000. pp. 126–132. 10.1016/S0968-0004(99)01533-9 PubMed DOI

Kopacz MM, Fraaije MW. Turning a monocovalent flavoprotein into a bicovalent flavoprotein by structure-inspired mutagenesis. Bioorganic Med Chem. 2014;22: 5621–5627. 10.1016/j.bmc.2014.05.051 PubMed DOI

Leferink NGH, Fraaije MW, Joosten HJ, Schaap PJ, Mattevi A, van Berkel WJH. Identification of a gatekeeper residue that prevents dehydrogenases from acting as oxidases. J Biol Chem. 2009;284: 4392–4397. 10.1074/jbc.M808202200 PubMed DOI

Cleland WW. The kinetics of enzyme-catalyzed reactions with two or more substrates or products. I. Nomenclature and rate equations. 1963. Biochim Biophys Acta. 1989;1000: 213–220. 10.1016/0926-6569(63)90227-X PubMed DOI

Zafred D, Nandy A, Pump L, Kahlert H, Keller W. Crystal structure and immunologic characterization of the major grass pollen allergen Phl p 4. J Allergy Clin Immunol. 2013;132 10.1016/j.jaci.2013.03.021 PubMed DOI

Dinneny JR, Long T a, Wang JY, Jung JW, Mace D, Pointer S, et al. Cell identity mediates the response of Arabidopsis roots to abiotic stress. Science. 2008;320: 942–5. 10.1126/science.1153795 PubMed DOI

Pagnussat GC, Yu H-J, Ngo Q a, Rajani S, Mayalagu S, Johnson CS, et al. Genetic and molecular identification of genes required for female gametophyte development and function in Arabidopsis. Development. 2005;132: 603–614. 10.1242/dev.01595 PubMed DOI

Petersen TN, Brunak S, von Heijne G, Nielsen H. SignalP 4.0: discriminating signal peptides from transmembrane regions. Nature Methods. 2011. pp. 785–786. 10.1038/nmeth.1701 PubMed DOI

Weis R, Luiten R, Skranc W, Schwab H, Wubbolts M, Glieder A. Reliable high-throughput screening with Pichia pastoris by limiting yeast cell death phenomena. FEMS Yeast Res. 2004;5: 179–189. 10.1016/j.femsyr.2004.06.016 PubMed DOI

Schrittwieser JH, Resch V, Wallner S, Lienhart W-D, Sattler JH, Resch J, et al. Biocatalytic organic synthesis of optically pure (s)-scoulerine and berbine and benzylisoquinoline alkaloids. J Org Chem. 2011;76: 6703–6714. 10.1021/jo201056f PubMed DOI PMC

Kabsch W. Automatic processing of rotation diffraction data from crystals of initially unknown symmetry and cell constants. Journal of Applied Crystallography. 1993. pp. 795–800. 10.1107/S0021889893005588 DOI

McCoy AJ, Grosse-Kunstleve RW, Adams PD, Winn MD, Storoni LC, Read RJ. Phaser crystallographic software. J Appl Crystallogr. 2007;40: 658–674. 10.1107/S0021889807021206 PubMed DOI PMC

Emsley P, Cowtan K. Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr. 2004;60: 2126–2132. 10.1107/S0907444904019158 PubMed DOI

Adams PD, Grosse-Kunstleve RW, Hung L-W, Ioerger TR, McCoy AJ, Moriarty NW, et al. PHENIX : building new software for automated crystallographic structure determination. Acta Crystallogr Sect D Biol Crystallogr. 2002;58: 1948–1954. 10.1107/S0907444902016657 PubMed DOI

Painter J, Merritt EA. Optimal description of a protein structure in terms of multiple groups undergoing TLS motion. Acta Crystallogr D Biol Crystallogr. 2006;62: 439–450. 10.1107/S0907444906005270 PubMed DOI

Painter J, Merritt EA. web server for the generation of multi-group TLS models. Journal of Applied Crystallography. 2006. pp. 109–111. 10.1107/S0021889805038987 DOI

Massey V. Flavins and flavoproteins 1990. B. Curti, S. Ronchi and G. Zanetti (eds). de Gruyter, Berlin and New York. xxiii + 945 pages, DM390 (1991) [Internet]. Cell Biochemistry and Function. John Wiley & Sons, Ltd; 1992. 10.1002/cbf.290100117 DOI

Hyun TK, Van Der Graaff E, Albacete A, Eom SH, Großkinsky DK, Böhm H, et al. The ArabidopsisPLAT domain protein1 is critically involved in abiotic stress tolerance. PLoS One. 2014;9 10.1371/journal.pone.0112946 PubMed DOI PMC

Alonso JM, Stepanova AN, Leisse TJ, Kim CJ, Chen H, Shinn P, et al. Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science. 2003;301: 653–7. 10.1126/science.1086391 PubMed DOI

Waterhouse AM, Procter JB, Martin DMA, Clamp M, Barton GJ. Jalview Version 2-A multiple sequence alignment editor and analysis workbench. Bioinformatics. 2009;25: 1189–1191. 10.1093/bioinformatics/btp033 PubMed DOI PMC

Rambaut A. FigTree v1.3.1. 2006–2009. Accessed Novemb 29, 2012. 2009; Program package available at http://tree.bio.ed.ac.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...