Species- and Strain-Specific Adaptation of the HSP70 Super Family in Pathogenic Trypanosomatids
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
PubMed
27371955
PubMed Central
PMC4943205
DOI
10.1093/gbe/evw140
PII: evw140
Knihovny.cz E-zdroje
- Klíčová slova
- HSP70, Leishmania, copy number variation, evolution, gene loss, heat shock protein, phylogeny, synteny,
- MeSH
- amplifikace genu genetika MeSH
- druhová specificita MeSH
- fylogeneze MeSH
- genom MeSH
- Leishmania genetika patogenita MeSH
- leishmanióza genetika parazitologie MeSH
- lidé MeSH
- molekulární evoluce * MeSH
- proteiny tepelného šoku HSP70 genetika MeSH
- variabilita počtu kopií segmentů DNA genetika MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- proteiny tepelného šoku HSP70 MeSH
All eukaryotic genomes encode multiple members of the heat shock protein 70 (HSP70) family, which evolved distinctive structural and functional features in response to specific environmental constraints. Phylogenetic analysis of this protein family thus can inform on genetic and molecular mechanisms that drive species-specific environmental adaptation. Here we use the eukaryotic pathogen Leishmania spp. as a model system to investigate the evolution of the HSP70 protein family in an early-branching eukaryote that is prone to gene amplification and adapts to cytotoxic host environments by stress-induced and chaperone-dependent stage differentiation. Combining phylogenetic and comparative analyses of trypanosomatid genomes, draft genome of Paratrypanosoma and recently published genome sequences of 204 L. donovani field isolates, we gained unique insight into the evolutionary dynamics of the Leishmania HSP70 protein family. We provide evidence for (i) significant evolutionary expansion of this protein family in Leishmania through gene amplification and functional specialization of highly conserved canonical HSP70 members, (ii) evolution of trypanosomatid-specific, non-canonical family members that likely gained ATPase-independent functions, and (iii) loss of one atypical HSP70 member in the Trypanosoma genus. Finally, we reveal considerable copy number variation of canonical cytoplasmic HSP70 in highly related L. donovani field isolates, thus identifying this locus as a potential hot spot of environment-genotype interaction. Our data draw a complex picture of the genetic history of HSP70 in trypanosomatids that is driven by the remarkable plasticity of the Leishmania genome to undergo massive intra-chromosomal gene amplification to compensate for the absence of regulated transcriptional control in these parasites.
Zobrazit více v PubMed
Adl SM, et al. 2012. The revised classification of eukaryotes. J Eukaryot Microbiol. 59:429–493. PubMed PMC
Altschul SF, et al. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25:3389–3402. PubMed PMC
Bangs JD, Brouch EM, Ransom DM, Roggy JL. 1996. A soluble secretory reporter system in Trypanosoma brucei—studies on endoplasmic reticulum targeting. J Biol Chem. 271:18387–18393. PubMed
Blatch GL, Lassle M. 1999. The tetratricopeptide repeat: a structural motif mediating protein-protein interactions. Bioessays 21:932–939. PubMed
Boorstein WR, Ziegelhoffer T, Craig EA. 1994. Molecular evolution of the HSP70 multigene family. J Mol Evol. 38:1–17. PubMed
Brochu C, Haimeur A, Ouellette M. 2004. The heat shock protein HSP70 and heat shock cognate protein HSC70 contribute to antimony tolerance in the protozoan parasite Leishmania. Cell Stress Chaperones 9:294–303. PubMed PMC
Campos RM, et al. 2008. Distinct mitochondrial HSP70 homologues conserved in various Leishmania species suggest novel biological functions. Mol Biochem Parasitol. 160:157–162. PubMed
Clayton CE. 2002. Life without transcriptional control? From fly to man and back again (vol 21, pg 1881, 2002). EMBO J. 21:3917–3917. PubMed PMC
Criscuolo A, Gribaldo S. 2010. BMGE (Block Mapping and Gathering with Entropy): a new software for selection of phylogenetic informative regions from multiple sequence alignments. BMC Evol Biol. 10:210.. PubMed PMC
Daugaard M, Rohde M, Jaattela M. 2007. The heat shock protein 70 family: highly homologous proteins with overlapping and distinct functions. FEBS Lett. 581:3702–3710. PubMed
David M, et al. 2010. Preferential translation of Hsp83 in Leishmania requires a thermosensitive polypyrimidine-rich element in the 3' UTR and involves scanning of the 5' UTR. RNA 16:364–374. PubMed PMC
Downing T, et al. 2011. Whole genome sequencing of multiple Leishmania donovani clinical isolates provides insights into population structure and mechanisms of drug resistance. Genome Res. 21:2143–2156. PubMed PMC
Dragovic Z, Broadley SA, Shomura Y, Bracher A, Hartl FU. 2006. Molecular chaperones of the Hsp110 family act as nucleotide exchange factors of Hsp70s. EMBO J. 25:2519–2528. PubMed PMC
Droll D, et al. 2013. Post-transcriptional regulation of the trypanosome heat shock response by a zinc finger protein. PLoS Pathog 9:e1003286.. PubMed PMC
Finn RD, et al. 2015. HMMER web server: 2015 update. Nucleic Acids Res. 43:W30–W38. PubMed PMC
Flegontov P, et al. 2013. Paratrypanosoma is a novel early-branching trypanosomatid. Curr Biol. 23:1787–1793. PubMed
Folgueira C, Canavate C, Chicharro C, Requena JM. 2007. Genomic organization and expression of the HSP70 locus in New and Old World Leishmania species. Parasitology 134:369–377. PubMed
Folgueira C, et al. 2005. The translational efficiencies of the two Leishmania infantum HSP70 mRNAs, differing in their 3'-untranslated regions, are affected by shifts in the temperature of growth through different mechanisms. J Biol Chem. 280:35172–35183. PubMed
Folgueira C, Requena JM. 2007. A postgenomic view of the heat shock proteins in kinetoplastids. FEMS Microbiol Rev 31:359–377. PubMed
Forterre P. 2015. The universal tree of life: an update. Front Microbiol. 6:717.. PubMed PMC
Gassler CS, et al. 1998. Mutations in the DnaK chaperone affecting interaction with the DnaJ cochaperone. Proc Natl Acad Sci USA. 95:15229–15234. PubMed PMC
Gil M, Zanetti MS, Zoller S, Anisimova M. 2013. CodonPhyML: fast maximum likelihood phylogeny estimation under codon substitution models. Mol Biol Evol. 30:1270–1280. PubMed PMC
Guindon S, Gascuel O. 2003. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol. 52:696–704. PubMed
Guindon S, et al. 2010. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol. 59:307–321. PubMed
Gupta RS, Singh B. 1994. Phylogenetic analysis of 70-Kd heat-shock protein sequences suggests a chimeric origin for the eukaryotic cell-nucleus. Curr Biol. 4:1104–1114. PubMed
Hampl V, et al. 2009. Phylogenomic analyses support the monophyly of Excavata and resolve relationships among eukaryotic “supergroups”. Proc Natl Acad Sci USA. 106:3859–3864. PubMed PMC
He D, et al. 2014. An alternative root for the eukaryote tree of life. Curr Biol. 24:465–470. PubMed
Hem S, et al. 2010. Identification of Leishmania-specific protein phosphorylation sites by LC-ESI-MS/MS and comparative genomics analyses. Proteomics 10:3868–3883. PubMed
Hughes AL. 1993. Nonlinear relationships among evolutionary rates identify regions of functional divergence in Heat-Shock Protein-70 genes. Mol Biol Evol. 10:243–255. PubMed
Imamura H, et al. 2016. Evolutionary genomics of epidemic visceral Leishmaniasis in the Indian subcontinent. eLife e12613.. PubMed PMC
Ivens AC, et al. 2005. The genome of the kinetoplastid parasite, Leishmania major. Science 309:436–442. PubMed PMC
Jensen ATR, Curtis J, Montgomery J, Handman E, Theander TG. 2001. Molecular and immunological characterisation of the glucose regulated protein 78 of Leishmania donovani. BBActa-Protein Struct M 1549:73–87. PubMed
Kampinga HH, Craig EA. 2010. The HSP70 chaperone machinery: J proteins as drivers of functional specificity. Nat Rev Mol Cell Biol. 11:579–592. PubMed PMC
Katoh K, Standley DM. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 30:772–780. PubMed PMC
Kominek J, Marszalek J, Neuveglise C, Craig EA, Williams BL. 2013. The complex evolutionary dynamics of Hsp70s: a genomic and functional perspective. Genome Biol Evol. 5:2460–2477. PubMed PMC
Le SQ, Gascuel O. 2008. An improved general amino acid replacement matrix. Mol Biol Evol. 25:1307–1320. PubMed
Lechat P, Souche E, Moszer I. 2013. SynTView—an interactive multi-view genome browser for next-generation comparative microorganism genomics. BMC Bioinformatics 14:227. PubMed PMC
Leifso K, Cohen-Freue G, Dogra N, Murray A, McMaster WR. 2007. Genomic and proteomic expression analysis of Leishmania promastigote and amastigote life stages: the Leishmania genome is constitutively expressed. Mol Biochem Parasit 152:35–46. PubMed
Leprohon P, Fernandez-Prada C, Gazanion E, Monte-Neto R, Ouellette M. 2015. Drug resistance analysis by next generation sequencing in Leishmania. Int J Parasitol Drugs Drug Resist 5:26–35. PubMed PMC
Li JZ, Qian XG, Sha BD. 2009. Heat shock protein 40: structural studies and their functional implications. Protein: Peptide Lett. 16:606–612. PubMed PMC
Liu QL, Hendrickson WA. 2007. Insights into Hsp70 chaperone activity from a crystal structure of the yeast Hsp110 Sse1. Cell 131:106–120. PubMed PMC
Logan-Klumpler FJ, et al. 2012. GeneDB—an annotation database for pathogens. Nucleic Acids Res. 40:D98–D108. PubMed PMC
Louw CA, Ludewig MH, Mayer J, Blatch GL. 2010. The Hsp70 chaperones of the Tritryps are characterized by unusual features and novel members. Parasitol Int 59:497–505. PubMed
Marchler-Bauer A, et al. 2015. CDD: NCBI's conserved domain database. Nucleic Acids Res. 43:D222–D226. PubMed PMC
Mayer MP, Bukau B. 2005. Hsp70 chaperones: cellular functions and molecular mechanism. Cell Mol Life Sci. 62:670–684. PubMed PMC
Mayer MP, et al. 2000. Multistep mechanism of substrate binding determines chaperone activity of Hsp70. Nat Struct Biol. 7:586–593. PubMed
McKenna A, et al. 2010. The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20:1297–1303. PubMed PMC
Miller MA, et al. 2000. Inducible resistance to oxidant stress in the protozoan Leishmania chagasi. J Biol Chem. 275:33883–33889. PubMed
Morales MA, et al. 2010. Phosphoproteome dynamics reveal heat-shock protein complexes specific to the Leishmania donovani infectious stage. Proc Natl Acad Sci USA. 107:8381–8386. PubMed PMC
Peacock CS, et al. 2007. Comparative genomic analysis of three Leishmania species that cause diverse human disease. Nat Genet. 39:839–847. PubMed PMC
Pelham HRB. 1989. Heat-shock and the sorting of Luminal Er proteins. EMBO J. 8:3171–3176. PubMed PMC
Pidoux AL, Armstrong J. 1992. Analysis of the Bip gene and identification of an Er retention signal in Schizosaccharomycespombe. EMBO J. 11:1583–1591. PubMed PMC
Quijada L, Soto M, Alonso C, Requena JM. 2000. Identification of a putative regulatory element in the 3'-untranslated region that controls expression of HSP70 in Leishmania infantum. Mol Biochem Parasitol. 110:79–91. PubMed
Raviol H, Sadlish H, Rodriguez F, Mayer MP, Bukau B. 2006. Chaperone network in the yeast cytosol: Hsp110 is revealed as an Hsp70 nucleotide exchange factor. EMBO J. 25:2510–2518. PubMed PMC
Requena JM, Montalvo AM, Fraga J. 2015. Molecular chaperones of Leishmania: central players in many stress-related and -unrelated physiological processes. Biomed Res Int 3013:26. PubMed PMC
Rodríguez F, Oliver JL, Marín A, Medina JR. 1990. The general stochastic model of nucleotide substitution. J Theor Biol. 142:485–501. PubMed
Rogers MB, et al. 2011. Chromosome and gene copy number variation allow major structural change between species and strains of Leishmania. Genome Res. 21:2129–2142. PubMed PMC
Searle S, Mccrossan MV, Smith DF. 1993. Expression of a mitochondrial stress protein in the protozoan parasite Leishmania major. J Cell Sci. 104:1091–1100. PubMed
Searle S, Smith DF. 1993. Leishmania major—characterization and expression of a cytoplasmic stress-related protein. Exp Parasitol. 77:43–52. PubMed
Shaner L, Sousa R, Morano KA. 2006. Characterization of Hsp70 binding and nucleotide exchange by the yeast Hsp110 chaperone Sse1. Biochemistry 45:15075–15084. PubMed PMC
Shonhai A, Maier AG, Przyborski JM, Blatch GL. 2007. Intracellular protozoan parasites of humans: the role of molecular chaperones in development and pathogenesis Protein Pept Lett. 18(2):143–57. PubMed
Sibley LD. 2011. Invasion and intracellular survival by protozoan parasites. Immunol Rev 240:72–91. PubMed PMC
Stanke M, et al. 2006. AUGUSTUS: ab initio prediction of alternative transcripts. Nucleic Acids Res. 34:W435–W439. PubMed PMC
Steel GJ, Fullerton DM, Tyson JR, Stirling CJ. 2004. Coordinated activation of Hsp70 chaperones. Science 303:98–101. PubMed
Suh WC, Lu CZ, Gross CA. 1999. Structural features required for the interaction of the Hsp70 molecular chaperone DnaK with its cochaperone DnaJ. J Biol Chem. 274:30534–30539. PubMed
Suh WC, et al. 1998. Interaction of the Hsp70 molecular chaperone, DnaK, with its cochaperone DnaJ. Proc Natl Acad Sci USA. 95:15223–15228. PubMed PMC
Syldatk C, May O, Altenbuchner J, Mattes R, Siemann M. 1999. Microbial hydantoinases—industrial enzymes from the origin of life? Appl Microbiol Biot 51:293–309. PubMed
Szabo A, et al. 1994. The ATP hydrolysis-dependent reaction cycle of the Escherichia coli Hsp70 system DnaK, DnaJ, and GrpE. Proc Natl Acad Sci USA. 91:10345–10349. PubMed PMC
Thorvaldsdottir H, Robinson JT, Mesirov JP. 2013. Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Brief Bioinform. 14:178–192. PubMed PMC
Torres DC, Ribeiro-Alves M, Romero GAS, Davila AMR, Cupolillo E. 2013. Assessment of drug resistance related genes as candidate markers for treatment outcome prediction of cutaneous leishmaniasis in Brazil. Acta Trop 126:132–141. PubMed
Týč J, Klingbeil MM, Lukes J. 2015. Mitochondrial heat shock protein machinery hsp70/hsp40 is indispensable for proper mitochondrial DNA maintenance and replication. mBio 6: e02425–14 PubMed PMC
Vogel M, Mayer MP, Bukau B. 2006. Allosteric regulation of Hsp70 chaperones involves a conserved interdomain linker. J Biol Chem. 281:38705–38711. PubMed
Wiesgigl M, Clos J. 2001. Heat shock protein 90 homeostasis controls stage differentiation in Leishmania donovani. Mol Biol Cell 12:3307–3316. PubMed PMC
Williams TA. 2014. Evolution: rooting the eukaryotic tree of life. Curr Biol. 24:R151–R152. PubMed
Yau WL, et al. 2010. Cyclosporin a treatment of Leishmania donovani reveals stage-specific functions of cyclophilins in parasite proliferation and viability. PloS Neglect Trop D 4: e729 PubMed PMC
Zilberstein D, Shapira M. 1994. The role of pH and temperature in the development of Leishmania parasites. Annu Rev Microbiol. 48:449–470. PubMed
Zilka A, Garlapati S, Dahan E, Yaolsky V, Shapira M. 2001. Developmental regulation of heat shock protein 83 in Leishmania. J Biol Chem. 276:47922–47929. PubMed