Root Foraging Performance and Life-History Traits

. 2016 ; 7 () : 779. [epub] 20160609

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid27375639

Plants use their roots to forage for nutrients in heterogeneous soil environments, but different plant species vastly differ in the intensity of foraging they perform. This diversity suggests the existence of constraints on foraging at the species level. We therefore examined the relationships between the intensity of root foraging and plant body traits across species in order to estimate the degree of coordination between plant body traits and root foraging as a form of plant behavior. We cultivated 37 perennial herbaceous Central European species from open terrestrial habitats in pots with three different spatial gradients of nutrient availability (steep, shallow, and no gradient). We assessed the intensity of foraging as differences in root placement inside pots with and without a spatial gradient of resource supply. For the same set of species, we retrieved data about body traits from available databases: maximum height at maturity, mean area of leaf, specific leaf area, shoot lifespan, ability to self-propagate clonally, maximal lateral spread (in clonal plants only), realized vegetative growth in cultivation, and realized seed regeneration in cultivation. Clonal plants and plants with extensive vegetative growth showed considerably weaker foraging than their non-clonal or slow-growing counterparts. There was no phylogenetic signal in the amount of expressed root foraging intensity. Since clonal plants foraged less than non-clonals and foraging intensity did not seem to be correlated with species phylogeny, we hypothesize that clonal growth itself (i.e., the ability to develop at least partly self-sustaining ramets) may be an answer to soil heterogeneity. Whereas unitary plants use roots as organs specialized for both resource acquisition and transport to overcome spatial heterogeneity in resource supply, clonal plants separate these two functions. Becoming a clonal plant allows higher specialization at the organ level, since a typical clonal plant can be viewed as a network of self-sustainable harvesting units connected together with specialized high-throughput connection organs. This may be an effective alternative for coping with spatial heterogeneity in resource availability.

Zobrazit více v PubMed

Aanderud Z. T., Bledsoe C. S., Richards J. H. (2003). Contribution of relative growth rate to root foraging by annual and perennial grasses from California oak woodlands. Oecologia 136 424–430. 10.1007/s00442-003-1275-7 PubMed DOI

Aarssen L. W. (2015). Body size and fitness in plants: revisiting the selection consequences of competition. Perspect. Plant Ecol. Evol. Syst. 17 236–242. 10.1016/j.ppees.2015.02.004 DOI

Alpert P., Mooney H. A. (1986). Resource sharing among ramets in the clonal herb, Fragaria chiloensis. Oecologia 70 227–233. 10.2307/4218037 PubMed DOI

Alpert P., Simms E. L. (2002). The relative advantages of plasticity and fixity in different environments: when is it good for a plant to adjust? Evol. Ecol. 16 285–297. 10.1023/A:1019684612767 DOI

Bradshaw A. D. (1965). Evolutionary significance of phenotypic plasticity in plants. Adv. Genet. 13 115–155. 10.1016/S0065-2660(08)60048-6 DOI

Campbell B. D., Grime J. P. (1989). A new method of exposing developing root systems to controlled patchiness in mineral nutrient supply. Ann. Bot. 63 395–400.

Campbell B. D., Grime J. P., Mackey J. M. L. (1991). A trade-off between scale and precision in resource foraging. Oecologia 87 532–538. 10.2307/4219731 PubMed DOI

Canty A., Ripley B. D. (2015). Boot : Bootstrap R S-Plus Functions Available at: http://CRAN.R-project.org/package=boot

Cornwell W. K., Westoby M., Falster D. S., FitzJohn R. G., O’Meara B. C., Pennell M. W., et al. (2014). Functional distinctiveness of major plant lineages. J. Ecol. 102 345–356. 10.1111/1365-2745.12208 DOI

Craine J. M., Dybzinski R. (2013). Mechanisms of plant competition for nutrients, water and light. Funct. Ecol. 27 833–840. 10.1111/1365-2435.12081 DOI

Craine J. M., Fargione J., Sugita S. (2005). Supply pre-emption, not concentration reduction, is the mechanism of competition for nutrients. New Phytol. 166 933–940. 10.1111/j.1469-8137.2005.01386.x PubMed DOI

Davison A. C., Hinkley D. V. (1997). Bootstrap Methods and Their Applications. Cambridge: Cambridge University Press; Available at: http://statwww.epfl.ch/davison/BMA/

de Kroons H., Hutchings M. J. (1995). Morphological plasticity in clonal plants: the foraging concept reconsidered. J. Ecol. 83 143 10.2307/2261158 DOI

de Kroon H., Schieving F. (1990). “Resource partitioning in relation to clonal growth strategy,” in Clonal Growth in Plants: Regulation and Function, eds van Groenendael J. M., De Kroon H. (Hague: SPB Academic Publishing; ), 113–130.

Dong M., de Kroon H. (1994). Plasticity in morphology and biomass allocation in Cynodon dactylon, a grass species forming stolons and rhizomes. Oikos 70 99 10.2307/3545704 DOI

Drew M. C. (1975). Comparison of the effects of a localised supply of phosphate, nitrate, ammonium, and potassium on the growth of the seminal root system, and the shot, in barley. New Phytol. 75 479–490. 10.1111/j.1469-8137.1975.tb01409.x DOI

Durka W., Michalski S. G. (2012). Daphne: a dated phylogeny of a large European flora for phylogenetically informed ecological analyses. Ecology 93 2297–2297. 10.1890/12-0743.1 DOI

Ellenberg H. (1992). Zeigerwerte von Pflanzen in Mitteleuropa. 2. verb. und erw. Aufl. Göttingen: Goltze.

Freschet G. T., Swart E. M., Cornelissen J. H. C. (2015). Integrated plant phenotypic responses to contrasting above- and below-ground resources: key roles of specific leaf area and root mass fraction. New Phytol. 206 1247–1260. 10.1111/nph.13352 PubMed DOI

Gaudet C. L., Keddy P. A. (1988). A comparative approach to predicting competitive ability from plant traits. Nature 334 242–243. 10.1038/334242a0 DOI

Gersani M., O’Brien E. E., Maina G. M., Abramsky Z. (2001). Tragedy of the commons as a result of root competition. J. Ecol. 89 660–669. 10.1046/j.0022-0477.2001.00609.x DOI

Grime J. P. (1977). Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. Am. Nat. 111 1169–1194. 10.2307/2460262 DOI

Grime J. P., Hunt R. (1975). Relative growth-rate: its range and adaptive significance in a local flora. J. Ecol. 63 393 10.2307/2258728 DOI

Grime J. P., Thompson K., Hunt R., Hodgson J. G., Cornelissen J. H. C., Rorison I. H., et al. (1997). Integrated screening validates primary axes of specialisation in plants. Oikos 79:259 10.2307/3546011 DOI

Groenendael J. M. V., Klimes L., Klimesova J., Hendriks R. J. J. (1996). Comparative ecology of clonal plants. Philos. Trans. R. Soc. B Biol. Sci. 351 1331–1339. 10.1098/rstb.1996.0116 DOI

Gruntman M., Novoplansky A. (2004). Physiologically mediated self/non-self discrimination in roots. Proc. Natl. Acad. Sci. U.S.A. 101 3863–3867. 10.1073/pnas.0306604101 PubMed DOI PMC

Harrell F. E., Jr. (2012). Hmisc: Harrell Miscellaneous. Available at: http://CRAN.R-project.org/package=Hmisc.

Herben T., Nováková Z., Klimešová J. (2014). Clonal growth and plant species abundance. Ann. Bot. 114 377–388. 10.1093/aob/mct308 PubMed DOI PMC

Herben T., Nováková Z., Klimešová J., Hrouda L. (2012). Species traits and plant performance: functional trade-offs in a large set of species in a botanical garden. J. Ecol. 100 1522–1533. 10.1111/j.1365-2745.2012.02018.x DOI

Herben T., Novoplansky A. (2007). Implications of self/non-self discrimination for spatial patterning of clonal plants. Evol. Ecol. 22 337–350. 10.1007/s10682-007-9214-4 DOI

Herben T., Šerá B., Klimešová J. (2015). Clonal growth and sexual reproduction: tradeoffs and environmental constraints. Oikos 124 469–476. 10.1111/oik.01692 DOI

Hodge A., Robinson D., Griffiths B. S., Fitter A. H. (1999). Why plants bother: root proliferation results in increased nitrogen capture from an organic patch when two grasses compete. Plant Cell Environ. 22 811–820. 10.1046/j.1365-3040.1999.00454.x DOI

Holzapfel C., Alpert P. (2003). Root cooperation in a clonal plant: connected strawberries segregate roots. Oecologia 134 72–77. 10.1007/s00442-002-1062-x PubMed DOI

Huber H. (1996). Plasticity of internodes and petioles in prostrate and erect Potentilla species. Funct. Ecol. 10:401 10.2307/2390290 DOI

Huber H., Lukács S., Watson M. A. (1999). Spatial structure of stoloniferous herbs: an interplay between structural blue-print, ontogeny and phenotypic plasticity. Plant Ecol. 141 107–115. 10.1023/A:1009861521047 DOI

Hutchings M. J., de Kroon H. (1994). “Foraging in plants: the role of morphological plasticity in resource acquisition,” in Advances in Ecological Research, eds Begon M., Fitter A. H. (Cambridge: Academic Press; ), 159–238. Available at: http://www.sciencedirect.com/science/article/pii/S0065250408602159

Jansen C., Steeg H. M., Kroon H. (2005). Investigating a trade-off in root morphological responses to a heterogeneous nutrient supply and to flooding. Funct. Ecol. 19 952–960. 10.1111/j.1365-2435.2005.01049.x DOI

Johnson H. A., Biondini M. E. (2001). Root morphological plasticity and nitrogen uptake of 59 plant species from the Great Plains grasslands, USA. Basic Appl. Ecol. 2 127–143. 10.1078/1439-1791-00044 DOI

Kembel S. W., Cahill J. F., Jr. (2005). Plant phenotypic plasticity belowground: a phylogenetic perspective on root foraging trade-offs. Am. Nat. 166 216–230. 10.1086/431287 PubMed DOI

Kembel S. W., De Kroon H., Cahill J. F., Mommer L. (2008). Improving the scale and precision of hypotheses to explain root foraging ability. Ann. Bot. 101 1295–1301. 10.1093/aob/mcn044 PubMed DOI PMC

Keser L. H., Dawson W., Song Y.-B., Yu F.-H., Fischer M., Dong M., et al. (2014). Invasive clonal plant species have a greater root-foraging plasticity than non-invasive ones. Oecologia 174 1055–1064. 10.1007/s00442-013-2829-y PubMed DOI

Keser L. H., Visser E. J. W., Dawson W., Song Y.-B., Yu F.-H., Fischer M., et al. (2015). Herbaceous plant species invading natural areas tend to have stronger adaptive root foraging than other naturalized species. Front. Plant Sci. 6:273 10.3389/fpls.2015.00273 PubMed DOI PMC

Kleyer M., Bekker R. M., Knevel I. C., Bakker J. P., Thompson K., Sonnenschein M., et al. (2008). The LEDA Traitbase: a database of life-history traits of the Northwest European flora. J. Ecol. 96 1266–1274. 10.1111/j.1365-2745.2008.01430.x DOI

Klimešová J., de Bello F. (2009). CLO-PLA: the database of clonal and bud bank traits of Central European flora. J. Veg. Sci. 20 511–516. 10.1111/j.1654-1103.2009.01050.x PubMed DOI

Klimešová J., Tackenberg O., Herben T. (2016). Herbs are different: clonal and bud bank traits can matter more than leaf-height-seed traits. New Phytol. 210 13–17. 10.1111/nph.13788 PubMed DOI

Kubát K., Hrouda L., Chrtek jun J., Kaplan Z., Kirschner J., et al. (2002). Klíč ke Květeně Èeské Republiky. [Key to the Flora of the Czech Republic.]. Vyd. 1. Praha: Academia.

Lepik M., Liira J., Zobel K. (2005). High shoot plasticity favours plant coexistence in herbaceous vegetation. Oecologia 145 465–474. 10.1007/s00442-005-0142-0 PubMed DOI

McNickle G. G., Brown J. S. (2014a). An ideal free distribution explains the root production of plants that do not engage in a tragedy of the commons game. J. Ecol. 102 963–971. 10.1111/1365-2745.12259 DOI

McNickle G. G., Brown J. S. (2014b). When Michaelis and Menten met Holling: towards a mechanistic theory of plant nutrient foraging behaviour. Aob Plants 6:lu066 10.1093/aobpla/plu066 PubMed DOI PMC

Newcombe R. G. (2006). Confidence intervals for an effect size measure based on the Mann–Whitney statistic. Part 1: general issues and tail-area-based methods. Stat. Med. 25 543–557. 10.1002/sim.2323 PubMed DOI

Oborny B., Mony C., Herben T. (2012). From virtual plants to real communities: a review of modelling clonal growth. Ecol. Model. 234 3–19. 10.1016/j.ecolmodel.2012.03.010 DOI

Orme D., Freckleton R., Thomas G., Petzoldt T., Fritz S., Isaac N., et al. (2013). caper: Comparative Analyses of Phylogenetics and Evolution in R. Available at: http://CRAN.R-project.org/package=caper

Padilla F. M., Mommer L., de Caluwe H., Smit-Tiekstra A. E., Wagemaker C. A. M., Ouborg N. J., et al. (2013). Early root overproduction not triggered by nutrients decisive for competitive success belowground. PLoS ONE 8:e55805 10.1371/journal.pone.0055805 PubMed DOI PMC

Pagel M. D. (1992). A method for the analysis of comparative data. J. Theor. Biol. 156 431–442. 10.1016/S0022-5193(05)80637-X DOI

R Core Team (2012). R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing; Available at: http://www.R-project.org/

Rousseeuw P., Croux C., Todorov V., Ruckstuhl A., Salibian-Barrera M., Verbeke T., et al. (2012). Robustbase: Basic Robust Statistics. Available at: http://CRAN.R-project.org/package=robustbase

Semchenko M., John E. A., Hutchings M. J. (2007). Effects of physical connection and genetic identity of neighbouring ramets on root-placement patterns in two clonal species. New Phytol. 176 644–654. 10.1111/j.1469-8137.2007.02211.x PubMed DOI

Stuefer J. F., De Kroon H., During H. J. (1996). Exploitation of environmental heterogeneity by spatial division of labor in a clonal plant. Funct. Ecol. 10 328–334. 10.2307/2390280 DOI

Tjoelker M. G., Craine J. M., Wedin D., Reich P. B., Tilman D. (2005). Linking leaf and root trait syndromes among 39 grassland and savannah species. New Phytol. 167 493–508. 10.1111/j.1469-8137.2005.01428.x PubMed DOI

Trinder C., Brooker R., Davidson H., Robinson D. (2012). Dynamic trajectories of growth and nitrogen capture by competing plants. New Phytol. 193 948–958. 10.1111/j.1469-8137.2011.04020.x PubMed DOI

Tsunoda T., Kachi N., Suzuki J.-I. (2014). Interactive effects of soil nutrient heterogeneity and belowground herbivory on the growth of plants with different root foraging traits. Plant Soil 384 327–334. 10.1007/s11104-014-2215-5 DOI

Van Kleunen M., Fischer M. (2005). Constraints on the evolution of adaptive phenotypic plasticity in plants: research review. New Phytol. 166 49–60. 10.1111/j.1469-8137.2004.01296.x PubMed DOI

Weiner J. (2004). Allocation, plasticity and allometry in plants. Perspect. Plant Ecol. Evol. Syst. 6 207–215. 10.1078/1433-8319-8383 DOI

Weiser M. (2015). Plant Body as a Behavioural Platform - an Ecologist’s Insight, dissertation, Charles University in Prague, Czech Republic. Available at: https://is.cuni.cz/webapps/zzp/detail/85014/

Weiser M., Koubek T., Herben T. (2016). Data from : root foraging performance and life-history traits. Dryad Digit. Repository. Available at: http://dx.doi.org/10.5061/dryad.f66db PubMed DOI PMC

Westoby M. (1998). A leaf-height-seed (LHS) plant ecology strategy scheme. Plant Soil 199 213–227. 10.1023/A:1004327224729 DOI

Wijesinghe D. K., Hutchings M. J. (1997). The effects of spatial scale of environmental heterogeneity on the growth of a clonal plant: an experimental study with Glechoma hederacea. J. Ecol. 85 17–28. 10.2307/2960624 DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...