Weather-dependent microhabitat use by Tetrix tenuicornis (Orthoptera: Tetrigidae)

. 2016 Aug ; 103 (7-8) : 68. [epub] 20160720

Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid27437707
Odkazy

PubMed 27437707
DOI 10.1007/s00114-016-1393-9
PII: 10.1007/s00114-016-1393-9
Knihovny.cz E-zdroje

For ectothermic animals, selection of a suitable microhabitat is affected by a combination of abiotic and biotic factors. Also important is the trade-off between those microhabitats with optimal microclimatic conditions and food availability vs. those with the lowest level of competition and lowest risk of predation. Central European species of groundhoppers (Orthoptera: Tetrigidae) live in locations with small-scale mosaics of patches formed by bare ground, moss cushions and vascular plants (grasses and forbs). Our research focused on the effects of selected weather components (current temperature, humidity, atmospheric pressure and sunlight) on specific microhabitat selection by adults (during the reproductive season) and by the last-instar nymphs (during the non-reproductive season) of the groundhopper Tetrix tenuicornis. Using experimental conditions, we determined that microhabitat use by T. tenuicornis is sex-specific and that microhabitat preference differs between adults and nymphs. We suppose that microhabitats are used according to groundhopper current needs in relation to each habitat's suitability for maintaining body temperature, food intake and reproductive behaviour. Microhabitat preferences were significantly associated with temperature and atmospheric pressure. Changes in atmospheric pressure signal changes in weather, and insects respond to increases or decreases in pressure by adjusting their behaviour in order to enhance survival. We propose that, under low atmospheric pressure, T. tenuicornis actively seeks microhabitats that provide increased protection from adverse weather.

Zobrazit více v PubMed

Folia Biol (Krakow). 2012;60(1-2):17-25 PubMed

J Insect Physiol. 2012 Dec;58(12):1562-7 PubMed

Trends Ecol Evol. 2009 Mar;24(3):127-35 PubMed

Oecologia. 2001 Nov;129(3):357-366 PubMed

Environ Pollut. 2005 Jan;133(2):373-81 PubMed

Arthropod Struct Dev. 2014 May;43(3):187-92 PubMed

Ecology. 2013 Oct;94(10):2299-310 PubMed

J Neurophysiol. 2010 Jun;103(6):3274-86 PubMed

Can J Res. 1946 Jun;24(Sect D):51-70 PubMed

Evolution. 2002 Feb;56(2):349-60 PubMed

Evolution. 1992 Feb;46(1):121-135 PubMed

BMC Ecol. 2013 May 02;13:17 PubMed

Oecologia. 2003 Jun;136(1):1-13 PubMed

Oecologia. 2006 May;148(1):153-61 PubMed

PLoS One. 2013 Oct 02;8(10):e75004 PubMed

Bull Entomol Res. 2008 Dec;98(6):605-12 PubMed

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...