Dimerization of quercetin, Diels-Alder vs. radical-coupling approach: a joint thermodynamics, kinetics, and topological study
Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
PubMed
27449669
DOI
10.1007/s00894-016-3051-8
PII: 10.1007/s00894-016-3051-8
Knihovny.cz E-zdroje
- Klíčová slova
- Antioxidants, Atoms in molecules (AIM), Density functional theory, Electron localization function (ELF), Flavonoids, Kinetics, Thermochemistry,
- Publikační typ
- časopisecké články MeSH
Quercetin is a prototypical antioxidant and prominent member of flavonoids, a large group of natural polyphenols. The oxidation of quercetin may lead to its dimerization, which is a paradigm of the more general polyphenol oligomerization. There exist two opposing mechanisms to describe the dimerization process, namely radical-coupling or Diels-Alder reactions. This work presents a comprehensive rationalization of this dimerization process, acquired from density functional theory (DFT) calculations. It is found that the two-step radical-coupling pathway is thermodynamically and kinetically preferred over the Diels-Alder reaction. This is in agreement with the experimental results showing the formation of only one isomer, whereas the Diels-Alder mechanism would yield two isomers. The evolution in bonding, occurring during these two processes, is investigated using the atoms in molecules (AIM) and electron localization function (ELF) topological approaches. It is shown that some electron density is accumulated between the fragments in the transition state of the radical-coupling reaction, but not in the transition state of the Diels-Alder process. Graphical Abstract Quantum chemistry calculations of the dimerization process of quercetin show that a radical coupling approach is preferred to a Diels-Alder type reaction, in agreement with experimental results. Analysis of the bonding evolution highlights the reaction mechanism.
Department of Physics Chemistry and Biology Linköping University SE 58183 Linköping Sweden
Inserm U850 Univ Limoges Faculty of Pharmacy 2 rue du Dr Marcland 87025 Limoges France
Zobrazit více v PubMed
J Phys Chem A. 2007 Feb 15;111(6):1138-45 PubMed
J Phys Chem A. 2008 Feb 7;112(5):1054-63 PubMed
Radiat Res. 2007 Aug;168(2):243-52 PubMed
Cardiovasc Res. 2013 Jan 1;97(1):13-22 PubMed
Food Funct. 2015 May;6(5):1399-417 PubMed
Chem Res Toxicol. 2004 Jun;17 (6):795-804 PubMed
J Agric Food Chem. 2007 Feb 7;55(3):903-11 PubMed
Int J Antimicrob Agents. 2011 Aug;38(2):99-107 PubMed
J Nat Prod. 1999 Jul;62(7):954-8 PubMed
J Phys Chem B. 2012 Feb 2;116(4):1309-18 PubMed
J Am Chem Soc. 2001 Feb 14;123(6):1173-83 PubMed
Free Radic Biol Med. 1996;20(7):933-56 PubMed
Free Radic Biol Med. 2009 Mar 15;46(6):745-58 PubMed
Eur J Med Chem. 2014 Jun 10;80:92-100 PubMed
J Phys Chem A. 2009 Dec 17;113(50):13881-91 PubMed
Phytochemistry. 2014 Jul;103:178-187 PubMed
J Phys Chem A. 2006 Dec 28;110(51):13939-47 PubMed
J Comput Chem. 2008 Jul 15;29(9):1440-9 PubMed
Bioorg Med Chem. 2002 Jul;10 (7):2233-7 PubMed
Pharmacol Ther. 2002 Nov-Dec;96(2-3):67-202 PubMed
J Org Chem. 2009 Apr 3;74(7):2699-709 PubMed
Chemistry. 2003 Jan 20;9(2):502-8 PubMed
Biochem Biophys Res Commun. 2006 Apr 7;342(2):459-64 PubMed
Phys Chem Chem Phys. 2009 Sep 21;11(35):7659-68 PubMed
Chemphyschem. 2011 Apr 18;12(6):1135-42 PubMed
J Org Chem. 2003 May 2;68(9):3433-8 PubMed
J Agric Food Chem. 2002 Jul 17;50(15):4357-63 PubMed
Org Biomol Chem. 2010 Dec 21;8(24):5495-504 PubMed