Dimerization of quercetin, Diels-Alder vs. radical-coupling approach: a joint thermodynamics, kinetics, and topological study

. 2016 Aug ; 22 (8) : 190. [epub] 20160724

Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid27449669
Odkazy

PubMed 27449669
DOI 10.1007/s00894-016-3051-8
PII: 10.1007/s00894-016-3051-8
Knihovny.cz E-zdroje

Quercetin is a prototypical antioxidant and prominent member of flavonoids, a large group of natural polyphenols. The oxidation of quercetin may lead to its dimerization, which is a paradigm of the more general polyphenol oligomerization. There exist two opposing mechanisms to describe the dimerization process, namely radical-coupling or Diels-Alder reactions. This work presents a comprehensive rationalization of this dimerization process, acquired from density functional theory (DFT) calculations. It is found that the two-step radical-coupling pathway is thermodynamically and kinetically preferred over the Diels-Alder reaction. This is in agreement with the experimental results showing the formation of only one isomer, whereas the Diels-Alder mechanism would yield two isomers. The evolution in bonding, occurring during these two processes, is investigated using the atoms in molecules (AIM) and electron localization function (ELF) topological approaches. It is shown that some electron density is accumulated between the fragments in the transition state of the radical-coupling reaction, but not in the transition state of the Diels-Alder process. Graphical Abstract Quantum chemistry calculations of the dimerization process of quercetin show that a radical coupling approach is preferred to a Diels-Alder type reaction, in agreement with experimental results. Analysis of the bonding evolution highlights the reaction mechanism.

Zobrazit více v PubMed

J Phys Chem A. 2007 Feb 15;111(6):1138-45 PubMed

J Phys Chem A. 2008 Feb 7;112(5):1054-63 PubMed

Radiat Res. 2007 Aug;168(2):243-52 PubMed

Cardiovasc Res. 2013 Jan 1;97(1):13-22 PubMed

Food Funct. 2015 May;6(5):1399-417 PubMed

Chem Res Toxicol. 2004 Jun;17 (6):795-804 PubMed

J Agric Food Chem. 2007 Feb 7;55(3):903-11 PubMed

Int J Antimicrob Agents. 2011 Aug;38(2):99-107 PubMed

J Nat Prod. 1999 Jul;62(7):954-8 PubMed

J Phys Chem B. 2012 Feb 2;116(4):1309-18 PubMed

J Am Chem Soc. 2001 Feb 14;123(6):1173-83 PubMed

Free Radic Biol Med. 1996;20(7):933-56 PubMed

Free Radic Biol Med. 2009 Mar 15;46(6):745-58 PubMed

Eur J Med Chem. 2014 Jun 10;80:92-100 PubMed

J Phys Chem A. 2009 Dec 17;113(50):13881-91 PubMed

Phytochemistry. 2014 Jul;103:178-187 PubMed

J Phys Chem A. 2006 Dec 28;110(51):13939-47 PubMed

J Comput Chem. 2008 Jul 15;29(9):1440-9 PubMed

Bioorg Med Chem. 2002 Jul;10 (7):2233-7 PubMed

Pharmacol Ther. 2002 Nov-Dec;96(2-3):67-202 PubMed

J Org Chem. 2009 Apr 3;74(7):2699-709 PubMed

Chemistry. 2003 Jan 20;9(2):502-8 PubMed

Biochem Biophys Res Commun. 2006 Apr 7;342(2):459-64 PubMed

Phys Chem Chem Phys. 2009 Sep 21;11(35):7659-68 PubMed

Chemphyschem. 2011 Apr 18;12(6):1135-42 PubMed

J Org Chem. 2003 May 2;68(9):3433-8 PubMed

J Agric Food Chem. 2002 Jul 17;50(15):4357-63 PubMed

Org Biomol Chem. 2010 Dec 21;8(24):5495-504 PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...