Characterization and Discrimination of Ancient Grains: A Metabolomics Approach

. 2016 Jul 27 ; 17 (8) : . [epub] 20160727

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid27472322

Hulled, or ancient, wheats were the earliest domesticated wheats by mankind and the ancestors of current wheats. Their cultivation drastically decreased during the 1960s; however, the increasing demand for a healthy and equilibrated diet led to rediscovering these grains. Our aim was to use a non-targeted metabolomic approach to discriminate and characterize similarities and differences between ancient Triticum varieties. For this purpose, 77 hulled wheat samples from three different varieties were collected: Garfagnana T. turgidum var. dicoccum L. (emmer), ID331 T. monococcum L. (einkorn) and Rouquin T. spelta L. (spelt). The ultra high performance liquid chromatography coupled to high resolution tandem mass spectrometry (UHPLC-QTOF) metabolomics approach highlighted a pronounced sample clustering according to the wheat variety, with an excellent predictability (Q²), for all the models built. Fifteen metabolites were tentatively identified based on accurate masses, isotopic pattern, and product ion spectra. Among these, alkylresorcinols (ARs) were found to be significantly higher in spelt and emmer, showing different homologue composition. Furthermore, phosphatidylcholines (PC) and lysophosphatidylcholines (lysoPC) levels were higher in einkorn variety. The results obtained in this study confirmed the importance of ARs as markers to distinguish between Triticum species and revealed their values as cultivar markers, being not affected by the environmental influences.

Zobrazit více v PubMed

Shewry P.R. Wheat. J. Exp. Bot. 2009;60:1537–1553. doi: 10.1093/jxb/erp058. PubMed DOI

Serpen A., Gokmen V., Karagoz A., Koksel H. Phytochemical quantification and total antioxidant capacities of Emmer (Triticum dicoccon Schrank) and Einkorn (Triticum monococcum L.) wheat landraces. J. Agric. Food Chem. 2008;56:7285–7292. doi: 10.1021/jf8010855. PubMed DOI

Galterio G., Codianni P., Giusti A.M., Pezzarossa B., Cannella C. Assessment of the agronomic and technological characteristics of Triticum turgidum ssp. dicoccum Schrank and T. spelta L. Nahrung. 2003;47:54–59. PubMed

Hidalgo A., Brandolini A. Nutritional properties of einkorn wheat (Triticum monococcum L.) J. Sci. Food Agric. 2014;94:601–612. doi: 10.1002/jsfa.6382. PubMed DOI

Bonafaccia G., Galli V., Francisci R., Mair V., Skrabanja V., Kreft I. Characteristics of spelt wheat products and nutritional value of spelt wheat-based bread. Food Chem. 2000;68:437–441. doi: 10.1016/S0308-8146(99)00215-0. DOI

Buvaneshwari G., Yenagi N.B., Hanchinal R.R., Naik R.K. Glycaemic responses to dicoccum products in the dietary management of diabetes. Ind. J. Nutr. Diet. 2003;40:363–368.

Piergiovanni A.R., Rizzi R., Pannaciulli E., Della Gatta C. Mineral composition in hulled wheat grains: A comparison between emmer (Triticum dicoccon Schrank) and spelt (T. spelta L.) accessions. Int. J. Food Sci. Nutr. 1997;48:381–386. doi: 10.3109/09637489709028586. DOI

Landberg R., Kamal-Eldin A., Salmenkallio-Marttila M., Rouau X., Åman P. Localization of alkylresorcinols in wheat, rye and barley kernels. J. Cereal Sci. 2008;48:401–406. doi: 10.1016/j.jcs.2007.09.013. DOI

Knodler M., Most M., Schieber A., Carle R. A novel approach to authenticity control of whole grain durum wheat (Triticum durum Desf.) flour and pasta, based on analysis of alkylresorcinol composition. Food Chem. 2010;118:177–181. doi: 10.1016/j.foodchem.2009.04.080. DOI

Ziegler J.U., Steingass C.B., Longin C.F., Würschum T., Reinhold C., Schweiggert R.M. Alkylresorcinol composition allows the differentiation of Triticum spp. having different degrees of ploidy. J. Cereal Sci. 2015;65:244–251. doi: 10.1016/j.jcs.2015.07.013. DOI

Rubert J., Zachariasova M., Hajslova J. Advances in high-resolution mass spectrometry based on metabolomics studies for food—A review. Food Addit. Contam. Part A. 2015;32:1685–1708. doi: 10.1080/19440049.2015.1084539. PubMed DOI

Rubert J., Lacina O., Fauhl-Hassek C., Hajslova J. Metabolic fingerprinting based on high-resolution tandem mass spectrometry: A reliable tool for wine authentication? Anal. Bioanal. Chem. 2014;406:6791–6803. doi: 10.1007/s00216-014-7864-y. PubMed DOI

Matthews S.B., Santra M., Mensack M.M., Wolfe P., Byrne P.F., Thompson H.J. Metabolite profiling of a diverse collection of wheat lines using ultraperformance liquid chromatography coupled with time-of-flight mass spectrometry. PLoS ONE. 2012;7:1217. doi: 10.1371/journal.pone.0044179. PubMed DOI PMC

Rubingh C.M., Bijlsma S., Derks E., Bobeldijk I., Verheij E.R. Assessing the performance of statistical validation tools for megavariate metabolomics data. Metabolomics. 2006;2:53–61. doi: 10.1007/s11306-006-0022-6. PubMed DOI PMC

Holcapek M., Jandera P., Zderadicka P., Hruba L. Characterization of triacylglycerol and diacylglycerol composition of plant oils using high-performance liquid chromatography-atmospheric pressure chemical ionization mass spectrometry. J. Chromatogr. A. 2003;1010:195–215. doi: 10.1016/S0021-9673(03)01030-6. PubMed DOI

Bird S.S., Marur V.R., Sniatynski M.J., Greenberg H.K., Kristal B.S. Serum lipidomics profiling using LC-MS and high-energy collisional dissociation fragmentation: Focus on triglyceride detection and characterization. Anal. Chem. 2011;83:6648–6657. doi: 10.1021/ac201195d. PubMed DOI PMC

Ross A.B., Kamal-Eldin A., Jung C., Shepherd M.J., Åman P. Gas chromatographic analysis of alkylresorcinols in rye (Secale cereale L.) grains. J. Agric. Food Chem. 2001;81:1405–1411. doi: 10.1002/jsfa.956. DOI

Kulawinek M., Kozubek A. Quantitative determination of alkylresorcinols in cereal grains: Independence of the length of the aliphatic side chain. J. Food Lipids. 2008;15:251–262. doi: 10.1111/j.1745-4522.2008.00118.x. DOI

Chen J., He S., Mao H., Sun C., Pan Y. Characterization of polyphenol compounds from the roots and stems of Parthenocissus laetevirens by high-performance liquid chromatography/tandem mass spectrometry. Rapid Commun. Mass Spectrom. 2009;23:737–744. doi: 10.1002/rcm.3937. PubMed DOI

Milne S., Ivanova P., Forrester J., Brown A.H. Lipidomics: An analysis of cellular lipids by ESI-MS. Methods. 2006;39:92–103. doi: 10.1016/j.ymeth.2006.05.014. PubMed DOI

Andersson A.M., Kamal-Eldin A., Fras A., Boros D., Amam P. Alkylresorcinols in wheat varieties in the HEALTHGRAIN diversity screen. J. Agric. Food Chem. 2008;56:9722–9725. doi: 10.1021/jf8011344. PubMed DOI

Ross A.B., Shepherd M.J., Schüpphaus M., Sinclair V., Alfaro B., Kamal-Eldin A., Åman P. Alkylresorcinols in cereals and cereal products. J. Agric. Food Chem. 2003;51:4111–4118. doi: 10.1021/jf0340456. PubMed DOI

Kozubek A., Tyman J.H.P. Resorcinolic lipids, the natural non-isoprenoid phenolic amphiphiles and their biological activity. Chem. Rev. 1999;99:1–25. doi: 10.1021/cr970464o. PubMed DOI

Andersson U., Dey E.S., Holm C., Degerman E. Rye bran alkylresorcinols suppress adipocyte lipolysis and hormone-sensitive lipase activity. Mol. Nutr. Food Res. 2011;55:S290–S293. doi: 10.1002/mnfr.201100231. PubMed DOI

Ross A.B., Shepherd M.J., Knudsen K.E.B., Glitsø L.V., Bowey E., Phillips J., Rowland I., Guo Z.X., Massy D.J.R., Aman P., et al. Absorption of dietary alkylresorcinols in ileal-cannulated pigs and rats. Br. J. Nutr. 2003;90:787–794. doi: 10.1079/BJN2003965. PubMed DOI

Hanhineva K., Brunius C., Andersson A., Marklund M., Juvonen R., Keski-Rahkonen P., Auriola S., Landberg R. Discovery of urinary biomarkers of whole grain rye intake in free-living subjects using nontargeted LC-MS metabolite profiling. Mol. Nutr. Food Res. 2015;59:2315–2325. doi: 10.1002/mnfr.201500423. PubMed DOI

Zarnowski R., Suzuki Y., Pietr S.J. Alkyl- and alkenylresorcinols of wheat grains and their chemotaxonomic significance. Z. Naturforsch. C. 2004;59:190–196. doi: 10.1515/znc-2004-3-411. PubMed DOI

González-Thuillier I., Salt L., Chope G., Penson S., Skeggs P., Tosi P., Powers S.J., Ward J.L., Wilde P., Shewry P.R., et al. Distribution of lipids in the grain of wheat (cv. Hereward) determined by lipidomic analysis of milling and pearling fractions. J. Agric. Food Chem. 2015;63:10705–10710. doi: 10.1021/acs.jafc.5b05289. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...