Characterization and Discrimination of Ancient Grains: A Metabolomics Approach
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
27472322
PubMed Central
PMC5000615
DOI
10.3390/ijms17081217
PII: ijms17081217
Knihovny.cz E-zdroje
- Klíčová slova
- foodomics, lipidomics, non-targeted metabolomics, phenolic lipid compounds, small grains,
- MeSH
- metabolomika metody MeSH
- pšenice klasifikace metabolismus MeSH
- spektrometrie hmotnostní - ionizace laserem za účasti matrice MeSH
- vysokoúčinná kapalinová chromatografie MeSH
- Publikační typ
- časopisecké články MeSH
Hulled, or ancient, wheats were the earliest domesticated wheats by mankind and the ancestors of current wheats. Their cultivation drastically decreased during the 1960s; however, the increasing demand for a healthy and equilibrated diet led to rediscovering these grains. Our aim was to use a non-targeted metabolomic approach to discriminate and characterize similarities and differences between ancient Triticum varieties. For this purpose, 77 hulled wheat samples from three different varieties were collected: Garfagnana T. turgidum var. dicoccum L. (emmer), ID331 T. monococcum L. (einkorn) and Rouquin T. spelta L. (spelt). The ultra high performance liquid chromatography coupled to high resolution tandem mass spectrometry (UHPLC-QTOF) metabolomics approach highlighted a pronounced sample clustering according to the wheat variety, with an excellent predictability (Q²), for all the models built. Fifteen metabolites were tentatively identified based on accurate masses, isotopic pattern, and product ion spectra. Among these, alkylresorcinols (ARs) were found to be significantly higher in spelt and emmer, showing different homologue composition. Furthermore, phosphatidylcholines (PC) and lysophosphatidylcholines (lysoPC) levels were higher in einkorn variety. The results obtained in this study confirmed the importance of ARs as markers to distinguish between Triticum species and revealed their values as cultivar markers, being not affected by the environmental influences.
Department of Food Science University of Parma Parco Area delle Scienze 95 A 43124 Parma Italy
Open Fields Srl Strada Consortile 2 Collecchio 43044 Parma Italy
Zobrazit více v PubMed
Shewry P.R. Wheat. J. Exp. Bot. 2009;60:1537–1553. doi: 10.1093/jxb/erp058. PubMed DOI
Serpen A., Gokmen V., Karagoz A., Koksel H. Phytochemical quantification and total antioxidant capacities of Emmer (Triticum dicoccon Schrank) and Einkorn (Triticum monococcum L.) wheat landraces. J. Agric. Food Chem. 2008;56:7285–7292. doi: 10.1021/jf8010855. PubMed DOI
Galterio G., Codianni P., Giusti A.M., Pezzarossa B., Cannella C. Assessment of the agronomic and technological characteristics of Triticum turgidum ssp. dicoccum Schrank and T. spelta L. Nahrung. 2003;47:54–59. PubMed
Hidalgo A., Brandolini A. Nutritional properties of einkorn wheat (Triticum monococcum L.) J. Sci. Food Agric. 2014;94:601–612. doi: 10.1002/jsfa.6382. PubMed DOI
Bonafaccia G., Galli V., Francisci R., Mair V., Skrabanja V., Kreft I. Characteristics of spelt wheat products and nutritional value of spelt wheat-based bread. Food Chem. 2000;68:437–441. doi: 10.1016/S0308-8146(99)00215-0. DOI
Buvaneshwari G., Yenagi N.B., Hanchinal R.R., Naik R.K. Glycaemic responses to dicoccum products in the dietary management of diabetes. Ind. J. Nutr. Diet. 2003;40:363–368.
Piergiovanni A.R., Rizzi R., Pannaciulli E., Della Gatta C. Mineral composition in hulled wheat grains: A comparison between emmer (Triticum dicoccon Schrank) and spelt (T. spelta L.) accessions. Int. J. Food Sci. Nutr. 1997;48:381–386. doi: 10.3109/09637489709028586. DOI
Landberg R., Kamal-Eldin A., Salmenkallio-Marttila M., Rouau X., Åman P. Localization of alkylresorcinols in wheat, rye and barley kernels. J. Cereal Sci. 2008;48:401–406. doi: 10.1016/j.jcs.2007.09.013. DOI
Knodler M., Most M., Schieber A., Carle R. A novel approach to authenticity control of whole grain durum wheat (Triticum durum Desf.) flour and pasta, based on analysis of alkylresorcinol composition. Food Chem. 2010;118:177–181. doi: 10.1016/j.foodchem.2009.04.080. DOI
Ziegler J.U., Steingass C.B., Longin C.F., Würschum T., Reinhold C., Schweiggert R.M. Alkylresorcinol composition allows the differentiation of Triticum spp. having different degrees of ploidy. J. Cereal Sci. 2015;65:244–251. doi: 10.1016/j.jcs.2015.07.013. DOI
Rubert J., Zachariasova M., Hajslova J. Advances in high-resolution mass spectrometry based on metabolomics studies for food—A review. Food Addit. Contam. Part A. 2015;32:1685–1708. doi: 10.1080/19440049.2015.1084539. PubMed DOI
Rubert J., Lacina O., Fauhl-Hassek C., Hajslova J. Metabolic fingerprinting based on high-resolution tandem mass spectrometry: A reliable tool for wine authentication? Anal. Bioanal. Chem. 2014;406:6791–6803. doi: 10.1007/s00216-014-7864-y. PubMed DOI
Matthews S.B., Santra M., Mensack M.M., Wolfe P., Byrne P.F., Thompson H.J. Metabolite profiling of a diverse collection of wheat lines using ultraperformance liquid chromatography coupled with time-of-flight mass spectrometry. PLoS ONE. 2012;7:1217. doi: 10.1371/journal.pone.0044179. PubMed DOI PMC
Rubingh C.M., Bijlsma S., Derks E., Bobeldijk I., Verheij E.R. Assessing the performance of statistical validation tools for megavariate metabolomics data. Metabolomics. 2006;2:53–61. doi: 10.1007/s11306-006-0022-6. PubMed DOI PMC
Holcapek M., Jandera P., Zderadicka P., Hruba L. Characterization of triacylglycerol and diacylglycerol composition of plant oils using high-performance liquid chromatography-atmospheric pressure chemical ionization mass spectrometry. J. Chromatogr. A. 2003;1010:195–215. doi: 10.1016/S0021-9673(03)01030-6. PubMed DOI
Bird S.S., Marur V.R., Sniatynski M.J., Greenberg H.K., Kristal B.S. Serum lipidomics profiling using LC-MS and high-energy collisional dissociation fragmentation: Focus on triglyceride detection and characterization. Anal. Chem. 2011;83:6648–6657. doi: 10.1021/ac201195d. PubMed DOI PMC
Ross A.B., Kamal-Eldin A., Jung C., Shepherd M.J., Åman P. Gas chromatographic analysis of alkylresorcinols in rye (Secale cereale L.) grains. J. Agric. Food Chem. 2001;81:1405–1411. doi: 10.1002/jsfa.956. DOI
Kulawinek M., Kozubek A. Quantitative determination of alkylresorcinols in cereal grains: Independence of the length of the aliphatic side chain. J. Food Lipids. 2008;15:251–262. doi: 10.1111/j.1745-4522.2008.00118.x. DOI
Chen J., He S., Mao H., Sun C., Pan Y. Characterization of polyphenol compounds from the roots and stems of Parthenocissus laetevirens by high-performance liquid chromatography/tandem mass spectrometry. Rapid Commun. Mass Spectrom. 2009;23:737–744. doi: 10.1002/rcm.3937. PubMed DOI
Milne S., Ivanova P., Forrester J., Brown A.H. Lipidomics: An analysis of cellular lipids by ESI-MS. Methods. 2006;39:92–103. doi: 10.1016/j.ymeth.2006.05.014. PubMed DOI
Andersson A.M., Kamal-Eldin A., Fras A., Boros D., Amam P. Alkylresorcinols in wheat varieties in the HEALTHGRAIN diversity screen. J. Agric. Food Chem. 2008;56:9722–9725. doi: 10.1021/jf8011344. PubMed DOI
Ross A.B., Shepherd M.J., Schüpphaus M., Sinclair V., Alfaro B., Kamal-Eldin A., Åman P. Alkylresorcinols in cereals and cereal products. J. Agric. Food Chem. 2003;51:4111–4118. doi: 10.1021/jf0340456. PubMed DOI
Kozubek A., Tyman J.H.P. Resorcinolic lipids, the natural non-isoprenoid phenolic amphiphiles and their biological activity. Chem. Rev. 1999;99:1–25. doi: 10.1021/cr970464o. PubMed DOI
Andersson U., Dey E.S., Holm C., Degerman E. Rye bran alkylresorcinols suppress adipocyte lipolysis and hormone-sensitive lipase activity. Mol. Nutr. Food Res. 2011;55:S290–S293. doi: 10.1002/mnfr.201100231. PubMed DOI
Ross A.B., Shepherd M.J., Knudsen K.E.B., Glitsø L.V., Bowey E., Phillips J., Rowland I., Guo Z.X., Massy D.J.R., Aman P., et al. Absorption of dietary alkylresorcinols in ileal-cannulated pigs and rats. Br. J. Nutr. 2003;90:787–794. doi: 10.1079/BJN2003965. PubMed DOI
Hanhineva K., Brunius C., Andersson A., Marklund M., Juvonen R., Keski-Rahkonen P., Auriola S., Landberg R. Discovery of urinary biomarkers of whole grain rye intake in free-living subjects using nontargeted LC-MS metabolite profiling. Mol. Nutr. Food Res. 2015;59:2315–2325. doi: 10.1002/mnfr.201500423. PubMed DOI
Zarnowski R., Suzuki Y., Pietr S.J. Alkyl- and alkenylresorcinols of wheat grains and their chemotaxonomic significance. Z. Naturforsch. C. 2004;59:190–196. doi: 10.1515/znc-2004-3-411. PubMed DOI
González-Thuillier I., Salt L., Chope G., Penson S., Skeggs P., Tosi P., Powers S.J., Ward J.L., Wilde P., Shewry P.R., et al. Distribution of lipids in the grain of wheat (cv. Hereward) determined by lipidomic analysis of milling and pearling fractions. J. Agric. Food Chem. 2015;63:10705–10710. doi: 10.1021/acs.jafc.5b05289. PubMed DOI