Secreted Isoform of Human Lynx1 (SLURP-2): Spatial Structure and Pharmacology of Interactions with Different Types of Acetylcholine Receptors
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
27485575
PubMed Central
PMC4971505
DOI
10.1038/srep30698
PII: srep30698
Knihovny.cz E-zdroje
- MeSH
- adaptorové proteiny signální transdukční MeSH
- alfa7 nikotinové acetylcholinové receptory metabolismus MeSH
- buněčné linie MeSH
- buňky PC12 MeSH
- CHO buňky MeSH
- Cricetulus MeSH
- dospělí MeSH
- epilepsie temporálního laloku patologie MeSH
- evokované potenciály fyziologie MeSH
- GPI-vázané proteiny metabolismus MeSH
- keratinocyty metabolismus MeSH
- krysa rodu Rattus MeSH
- lidé středního věku MeSH
- lidé MeSH
- nikotinové receptory metabolismus MeSH
- nukleární magnetická rezonance biomolekulární MeSH
- oocyty metabolismus MeSH
- počítačová simulace MeSH
- proliferace buněk fyziologie MeSH
- receptory muskarinové metabolismus MeSH
- vazba proteinů fyziologie MeSH
- vazebná místa fyziologie MeSH
- Xenopus MeSH
- zvířata MeSH
- Check Tag
- dospělí MeSH
- krysa rodu Rattus MeSH
- lidé středního věku MeSH
- lidé MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- adaptorové proteiny signální transdukční MeSH
- alfa7 nikotinové acetylcholinové receptory MeSH
- GPI-vázané proteiny MeSH
- LYNX1 protein, human MeSH Prohlížeč
- nicotinic receptor alpha3beta2 MeSH Prohlížeč
- nikotinové receptory MeSH
- receptory muskarinové MeSH
Human-secreted Ly-6/uPAR-related protein-2 (SLURP-2) regulates the growth and differentiation of epithelial cells. Previously, the auto/paracrine activity of SLURP-2 was considered to be mediated via its interaction with the α3β2 subtype of the nicotinic acetylcholine receptors (nAChRs). Here, we describe the structure and pharmacology of a recombinant analogue of SLURP-2. Nuclear magnetic resonance spectroscopy revealed a 'three-finger' fold of SLURP-2 with a conserved β-structural core and three protruding loops. Affinity purification using cortical extracts revealed that SLURP-2 could interact with the α3, α4, α5, α7, β2, and β4 nAChR subunits, revealing its broader pharmacological profile. SLURP-2 inhibits acetylcholine-evoked currents at α4β2 and α3β2-nAChRs (IC50 ~0.17 and >3 μM, respectively) expressed in Xenopus oocytes. In contrast, at α7-nAChRs, SLURP-2 significantly enhances acetylcholine-evoked currents at concentrations <1 μM but induces inhibition at higher concentrations. SLURP-2 allosterically interacts with human M1 and M3 muscarinic acetylcholine receptors (mAChRs) that are overexpressed in CHO cells. SLURP-2 was found to promote the proliferation of human oral keratinocytes via interactions with α3β2-nAChRs, while it inhibited cell growth via α7-nAChRs. SLURP-2/mAChRs interactions are also probably involved in the control of keratinocyte growth. Computer modeling revealed possible SLURP-2 binding to the 'classical' orthosteric agonist/antagonist binding sites at α7 and α3β2-nAChRs.
HiQScreen Sàrl 6 rte de Compois 1222 Vésenaz Geneva Switzerland
Institute of Physiology Academy of Sciences of the Czech Republic Prague 14220 Czech Republic
Lomonosov Moscow State University Leninskie Gori 1 Moscow 119234 Russian Federation
National Research University Higher School of Economics Myasnitskaya ul 20 101000 Moscow Russia
Zobrazit více v PubMed
Tsetlin V. I. Three-finger snake neurotoxins and Ly6 proteins targeting nicotinic acetylcholine receptors: pharmacological tools and endogenous modulators. Trends Pharmacol. Sci 36, 109–123 (2015). PubMed
Hannan S., Mortensen M. & Smart T. G. Snake neurotoxin α-bungarotoxin is an antagonist at native GABA(A) receptors. Neuropharmacology 93, 28–40 (2015). PubMed PMC
Kudryavtsev D. S. et al.. Neurotoxins from snake venoms and α-conotoxin ImI inhibit functionally active ionotropic γ-aminobutyric acid (GABA) receptors. J. Biol. Chem. 290, 22747–2258 (2015). PubMed PMC
Kini R. M. & Doley R. Structure, function and evolution of three-finger toxins: mini proteins with multiple targets. Toxicon 56, 855–867 (2010). PubMed
Kasheverov I. E., Utkin Y. N. & Tsetlin V. I. Naturally occurring and synthetic peptides acting on nicotinic acetylcholine receptors. Curr. Pharm. Des. 15, 2430–2452 (2009). PubMed
Servent D. et al.. Muscarinic toxins. Toxicon 58, 455–463 (2011). PubMed
Lyukmanova E. N. et al.. Structural Insight into Specificity of Interactions between Nonconventional Three-finger Weak Toxin from Naja kaouthia (WTX) and Muscarinic Acetylcholine Receptors. J. Biol. Chem. 290, 23616–23630 (2015). PubMed PMC
Wessler I. & Kirkpatrick C. J. Acetylcholine beyond neurons: the non-neuronal cholinergic system in humans. Br. J. Pharmacol. 154, 1558–1571 (2008) PubMed PMC
Miwa J., Lester H. A. & Walz A. Optimizing cholinergic tone through lynx modulators of nicotinic receptors: implications for plasticity and nicotine addiction. Physiology (Bethesda) 27, 187–199 (2012). PubMed
Ibañez-Tallon I. et al.. Novel modulation of neuronal nicotinic acetylcholine receptors by association with the endogenous prototoxin lynx1. Neuron 33, 893–903 (2002). PubMed
Morishita H., Miwa J. M., Heintz N. & Hensch T. K. Lynx1, a cholinergic brake, limits plasticity in adult visual cortex. Science 330, 1238–1240 (2010). PubMed PMC
Bukhari N. et al.. Unmasking Proteolytic Activity for Adult Visual Cortex Plasticity by the Removal of Lynx1. J. Neurosci. 35, 12693–12702 (2015). PubMed PMC
Arredondo J., Chernyavsky A. I., Webber R. J. & Grando S. A. Biological effects of SLURP-1 on human keratinocytes. J. Invest. Dermatol. 125, 1236–1241 (2005). PubMed
Tsuji H. et al.. SLURP-2, a novel member of the human Ly-6 superfamily that is up-regulated in psoriasis vulgaris. Genomics 81, 26–33 (2003). PubMed
Moriwaki Y. et al.. Immune system expression of SLURP-1 and SLURP-2, two endogenous nicotinic acetylcholine receptor ligands. Life Sci 80, 2365–2368 (2007). PubMed
Moriwaki Y. et al.. Primary sensory neuronal expression of SLURP-1, an endogenous nicotinic acetylcholine receptor ligand. Neurosci Res 64, 403–412 (2009). PubMed
Arredondo J., Chernyavsky A. I. & Grando S. A. SLURP-1 and -2 in normal, immortalized and malignant oral keratinocytes. Life Sci. 80, 2243–2247 (2007). PubMed PMC
Grando S. A. Basic and clinical aspects of non-neuronal acetylcholine: biological and clinical significance of non-canonical ligands of epithelial nicotinic acetylcholine receptors. J. Pharmacol. Sci. 106, 174–179 (2008). PubMed
Chernyavsky A. I., Kalantari-Dehaghi M., Phillips C., Marchenko S. & Grando S. A. Novel cholinergic peptides SLURP-1 and -2 regulate epithelialization of cutaneous and oral wounds. Wound Repair Regen 20, 103–113 (2012). PubMed PMC
Chernyavsky A. I., Galitovskiy V., Shchepotin I. B. & Grando S. A. Anti-inflammatory effects of the nicotinergic peptides SLURP-1 and SLURP-2 on human intestinal epithelial cells and immunocytes. Biomed. Res. Int. 2014, 609086 (2014). PubMed PMC
Moriwaki Y., Takada K., Tsuji S., Kawashima K. & Misawa H. Transcriptional regulation of SLURP2, a psoriasis-associated gene, is under control of IL-22 in the skin: A special reference to the nested gene LYNX1. Int. Immunopharmacol. 29, 71–75 (2015). PubMed
Perez C. & Khachemoune A. Mal de Meleda: A Focused Review. Am. J. Clin. Dermatol. 17, 63–70 (2016). PubMed
Allan C. M. et al.. Palmoplantar Keratoderma in Slurp2-Deficient Mice. J. Invest. Dermatol 136, 436–443 (2016). PubMed PMC
Lyukmanova E. N. et al.. Human Secreted Ly-6/uPAR Related Protein-1 (SLURP-1) is a Selective Allosteric Antagonist of α7 Nicotinic Acetylcholine Receptor. PLOS ONE 11, e0149733 (2016). PubMed PMC
Arredondo J., Chernyavsky A. I., Jolkovsky D. L., Webber R. J. & Grando S. A. SLURP-2: A novel cholinergic signaling peptide in human mucocutaneous epithelium. J. Cell Physiol. 208, 238–245 (2006). PubMed
Grando S. A., Pittelkow M. R. & Schallreuter K. U. Adrenergic and cholinergic control in the biology of epidermis: physiological and clinical significance. J. Invest. Dermatol. 126, 1948–1965 (2006). PubMed
Lyukmanova E. N. et al.. Human SLURP-1 and SLURP-2 Proteins Acting on Nicotinic Acetylcholine Receptors Reduce Proliferation of Human Colorectal Adenocarcinoma HT-29 Cells. Acta Naturae 6, 60–66 (2014). PubMed PMC
Summers A. E., Whelan C. J. & Parsons M. E. Nicotinic acetylcholine receptor subunits and receptor activity in the epithelial cell line HT29. Life Sci 72, 2091–2094 (2003). PubMed
Lyukmanova E. N. et al.. NMR structure and action on nicotinic acetylcholine receptors of water-soluble domain of human lynx1. J. Biol. Chem 286, 10618–10627 (2011). PubMed PMC
Nakayama H. et al.. Subtypes of neuronal nicotinic acetylcholine receptors involved in nicotine-induced phosphorylation of extracellular signal-regulated protein kinase in PC12h cells. Neurosci Lett 392, 101–104 (2006). PubMed
King J. R. & Kabbani N. Alpha 7 nicotinic receptor coupling to heterotrimeric G proteins modulates RhoA activation, cytoskeletal motility, and structural growth. J Neurochem, doi: 10.1111/jnc.13660 (2016). PubMed DOI
Grando S. A. Biological functions of keratinocyte cholinergic receptors. J. Investig. Dermatol. Symp. Proc. 2, 41–48 (1997). PubMed
Huang S. et al.. Complex between α-bungarotoxin and an α7 nicotinic receptor ligand-binding domain chimaera. Biochem. J. 454, 303–310 (2013). PubMed PMC
Thomsen M. S. et al.. Lynx1 and Aβ1–42 bind competitively to multiple nicotinic acetylcholine receptor subtypes. Neurobiol. Aging. In press (2016). PubMed
Cachelin A. B. & Rust G. Unusual pharmacology of (+)-tubocurarine with rat neuronal nicotinic acetylcholine receptors containing beta 4 subunits. Mol. Pharmacol. 46, 1168–1174 (1994). PubMed
Smulders C. J. et al.. Cholinergic drugs potentiate human nicotinic alpha4beta2 acetylcholine receptors by a competitive mechanism. Eur. J. Pharmacol. 509, 97–108 (2005). PubMed
Wallace T. L. et al.. RG3487, a novel nicotinic α7 receptor partial agonist, improves cognition and sensorimotor gating in rodents. J. Pharmacol. Exp. Ther. 336, 242–253 (2011). PubMed
Prickaerts J. et al.. EVP-6124, a novel and selective α7 nicotinic acetylcholine receptor partial agonist, improves memory performance by potentiating the acetylcholine response of α7 nicotinic acetylcholine receptors. Neuropharmacology 62, 1099–1110 (2012). PubMed
Tsetlin V. I. & Hucho F. Snake and snail toxins acting on nicotinic acetylcholine receptors: fundamental aspects and medical applications. FEBS Lett 557, 9–13 (2004). PubMed
Lyukmanova E. N. et al.. Bacterial expression, NMR, and electrophysiology analysis of chimeric short/long-chain alpha-neurotoxins acting on neuronal nicotinic receptors. J. Biol. Chem. 282, 24784–24791 (2007). PubMed
Lyukmanova E. N. et al.. Ws-LYNX1 Residues Important for Interaction with Muscle-Type and/or Neuronal Nicotinic Receptors. J. Biol. Chem. 288, 15888–15899 (2013). PubMed PMC
Marquer C. et al.. Structural model of ligand-G protein-coupled receptor (GPCR) complex based on experimental double mutant cycle data: MT7 snake toxin bound to dimeric hM1 muscarinic receptor. J. Biol. Chem. 286, 31661–31675 (2011). PubMed PMC
Li S. X. et al.. Ligand-binding domain of an α7-nicotinic receptor chimera and its complex with agonist. Nat. Neurosci 14, 1253–1259 (2011). PubMed PMC
Hansen S. B. et al.. Structures of Aplysia AChBP complexes with nicotinic agonists and antagonists reveal distinctive binding interfaces and conformations. EMBO J 24, 3635–3646 (2005). PubMed PMC
Shulepko M. A. et al.. Bacterial expression of the water-soluble domain of Lynx1, an endogenous neuromodulator of human nicotinic receptors. Russian J. Bioorg. Chem 37, 543–549 (2011). PubMed
Shulepko M. A. et al.. Human neuromodulator SLURP-1: bacterial expression, binding to muscle-type nicotinic acetylcholine receptor, secondary structure, and conformational heterogeneity in solution. Biochemistry (Mosc) 78, 204–211 (2013).. PubMed
Hogg R. C., Bandelier F., Benoit A., Dosch R. & Bertrand D. An automated system for intracellular and intranuclear injection. J. Neurosci Methods 169, 65–75 (2008). PubMed
Buckley N. J., Bonner T. I., Buckley C. M. & Brann M. R. Antagonist binding properties of five cloned muscarinic receptors expressed in CHO-K1 cells. Mol Pharmacol 35, 469–76. (1989). PubMed
Cavanagh J., Fairbrother W. J., Palmer A. G., Skelton N. J. & Rance M. Protein NMR Spectroscopy Principles and Practice, 2nd Ed. 781–817. (Academic Press, New York, USA, 2006).
Güntert P. Automated NMR structure calculation with CYANA. Methods Mol. Biol. 278, 353–378 (2004). PubMed
Martí-Renom M. A. et al.. Comparative protein structure modeling of genes and genomes. Annu Rev. Biophys. Biomol. Struct 29, 291–325 (2000). PubMed
Hess B., Kutzner C., van der Spoel D. & Lindahl E. GROMACS 4: Algorithms for highly efficient, load-balanced, and stable molecular simulation. J. Chem. Theory Comput. 4, 435–447 (2008). PubMed
Chen R., Li L. & Weng Z. ZDOCK: an initial-stage proteindocking algorithm. Proteins 52, 80–87 (2003). PubMed
Pyrkov T. V., Chugunov A. O., Krylov N. A., Nolde D. E. & Efremov R. G. PLATINUM: a web tool for analysis of hydrophobic/hydrophilic organization of biomolecular complexes. Bioinformatics 25, 1201–1202 (2009). PubMed
Thomsen M. S. et al.. α7 and β2 Nicotinic Acetylcholine Receptor Subunits Form Heteromeric Receptor Complexes that Are Expressed in the Human Cortex and Display Distinct Pharmacological Properties. PLoS One 10, e0130572 (2015). PubMed PMC
Chavez-Noriega L. E. et al.. Pharmacological Characterization of Recombinant Human Neuronal Nicotinic Acetylcholine Receptors H Alpha 2 Beta 2, H Alpha 2 Beta 4, H Alpha 3 Beta 2, H Alpha 3 Beta 4, H Alpha 4 Beta 2, H Alpha 4 Beta 4 and H Alpha 7 Expressed in Xenopus Oocytes. J. Pharmacol. Exp. Ther. 280, 346–56 (1997). PubMed