Secreted Isoform of Human Lynx1 (SLURP-2): Spatial Structure and Pharmacology of Interactions with Different Types of Acetylcholine Receptors

. 2016 Aug 03 ; 6 () : 30698. [epub] 20160803

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid27485575

Human-secreted Ly-6/uPAR-related protein-2 (SLURP-2) regulates the growth and differentiation of epithelial cells. Previously, the auto/paracrine activity of SLURP-2 was considered to be mediated via its interaction with the α3β2 subtype of the nicotinic acetylcholine receptors (nAChRs). Here, we describe the structure and pharmacology of a recombinant analogue of SLURP-2. Nuclear magnetic resonance spectroscopy revealed a 'three-finger' fold of SLURP-2 with a conserved β-structural core and three protruding loops. Affinity purification using cortical extracts revealed that SLURP-2 could interact with the α3, α4, α5, α7, β2, and β4 nAChR subunits, revealing its broader pharmacological profile. SLURP-2 inhibits acetylcholine-evoked currents at α4β2 and α3β2-nAChRs (IC50 ~0.17 and >3 μM, respectively) expressed in Xenopus oocytes. In contrast, at α7-nAChRs, SLURP-2 significantly enhances acetylcholine-evoked currents at concentrations <1 μM but induces inhibition at higher concentrations. SLURP-2 allosterically interacts with human M1 and M3 muscarinic acetylcholine receptors (mAChRs) that are overexpressed in CHO cells. SLURP-2 was found to promote the proliferation of human oral keratinocytes via interactions with α3β2-nAChRs, while it inhibited cell growth via α7-nAChRs. SLURP-2/mAChRs interactions are also probably involved in the control of keratinocyte growth. Computer modeling revealed possible SLURP-2 binding to the 'classical' orthosteric agonist/antagonist binding sites at α7 and α3β2-nAChRs.

Zobrazit více v PubMed

Tsetlin V. I. Three-finger snake neurotoxins and Ly6 proteins targeting nicotinic acetylcholine receptors: pharmacological tools and endogenous modulators. Trends Pharmacol. Sci 36, 109–123 (2015). PubMed

Hannan S., Mortensen M. & Smart T. G. Snake neurotoxin α-bungarotoxin is an antagonist at native GABA(A) receptors. Neuropharmacology 93, 28–40 (2015). PubMed PMC

Kudryavtsev D. S. et al.. Neurotoxins from snake venoms and α-conotoxin ImI inhibit functionally active ionotropic γ-aminobutyric acid (GABA) receptors. J. Biol. Chem. 290, 22747–2258 (2015). PubMed PMC

Kini R. M. & Doley R. Structure, function and evolution of three-finger toxins: mini proteins with multiple targets. Toxicon 56, 855–867 (2010). PubMed

Kasheverov I. E., Utkin Y. N. & Tsetlin V. I. Naturally occurring and synthetic peptides acting on nicotinic acetylcholine receptors. Curr. Pharm. Des. 15, 2430–2452 (2009). PubMed

Servent D. et al.. Muscarinic toxins. Toxicon 58, 455–463 (2011). PubMed

Lyukmanova E. N. et al.. Structural Insight into Specificity of Interactions between Nonconventional Three-finger Weak Toxin from Naja kaouthia (WTX) and Muscarinic Acetylcholine Receptors. J. Biol. Chem. 290, 23616–23630 (2015). PubMed PMC

Wessler I. & Kirkpatrick C. J. Acetylcholine beyond neurons: the non-neuronal cholinergic system in humans. Br. J. Pharmacol. 154, 1558–1571 (2008) PubMed PMC

Miwa J., Lester H. A. & Walz A. Optimizing cholinergic tone through lynx modulators of nicotinic receptors: implications for plasticity and nicotine addiction. Physiology (Bethesda) 27, 187–199 (2012). PubMed

Ibañez-Tallon I. et al.. Novel modulation of neuronal nicotinic acetylcholine receptors by association with the endogenous prototoxin lynx1. Neuron 33, 893–903 (2002). PubMed

Morishita H., Miwa J. M., Heintz N. & Hensch T. K. Lynx1, a cholinergic brake, limits plasticity in adult visual cortex. Science 330, 1238–1240 (2010). PubMed PMC

Bukhari N. et al.. Unmasking Proteolytic Activity for Adult Visual Cortex Plasticity by the Removal of Lynx1. J. Neurosci. 35, 12693–12702 (2015). PubMed PMC

Arredondo J., Chernyavsky A. I., Webber R. J. & Grando S. A. Biological effects of SLURP-1 on human keratinocytes. J. Invest. Dermatol. 125, 1236–1241 (2005). PubMed

Tsuji H. et al.. SLURP-2, a novel member of the human Ly-6 superfamily that is up-regulated in psoriasis vulgaris. Genomics 81, 26–33 (2003). PubMed

Moriwaki Y. et al.. Immune system expression of SLURP-1 and SLURP-2, two endogenous nicotinic acetylcholine receptor ligands. Life Sci 80, 2365–2368 (2007). PubMed

Moriwaki Y. et al.. Primary sensory neuronal expression of SLURP-1, an endogenous nicotinic acetylcholine receptor ligand. Neurosci Res 64, 403–412 (2009). PubMed

Arredondo J., Chernyavsky A. I. & Grando S. A. SLURP-1 and -2 in normal, immortalized and malignant oral keratinocytes. Life Sci. 80, 2243–2247 (2007). PubMed PMC

Grando S. A. Basic and clinical aspects of non-neuronal acetylcholine: biological and clinical significance of non-canonical ligands of epithelial nicotinic acetylcholine receptors. J. Pharmacol. Sci. 106, 174–179 (2008). PubMed

Chernyavsky A. I., Kalantari-Dehaghi M., Phillips C., Marchenko S. & Grando S. A. Novel cholinergic peptides SLURP-1 and -2 regulate epithelialization of cutaneous and oral wounds. Wound Repair Regen 20, 103–113 (2012). PubMed PMC

Chernyavsky A. I., Galitovskiy V., Shchepotin I. B. & Grando S. A. Anti-inflammatory effects of the nicotinergic peptides SLURP-1 and SLURP-2 on human intestinal epithelial cells and immunocytes. Biomed. Res. Int. 2014, 609086 (2014). PubMed PMC

Moriwaki Y., Takada K., Tsuji S., Kawashima K. & Misawa H. Transcriptional regulation of SLURP2, a psoriasis-associated gene, is under control of IL-22 in the skin: A special reference to the nested gene LYNX1. Int. Immunopharmacol. 29, 71–75 (2015). PubMed

Perez C. & Khachemoune A. Mal de Meleda: A Focused Review. Am. J. Clin. Dermatol. 17, 63–70 (2016). PubMed

Allan C. M. et al.. Palmoplantar Keratoderma in Slurp2-Deficient Mice. J. Invest. Dermatol 136, 436–443 (2016). PubMed PMC

Lyukmanova E. N. et al.. Human Secreted Ly-6/uPAR Related Protein-1 (SLURP-1) is a Selective Allosteric Antagonist of α7 Nicotinic Acetylcholine Receptor. PLOS ONE 11, e0149733 (2016). PubMed PMC

Arredondo J., Chernyavsky A. I., Jolkovsky D. L., Webber R. J. & Grando S. A. SLURP-2: A novel cholinergic signaling peptide in human mucocutaneous epithelium. J. Cell Physiol. 208, 238–245 (2006). PubMed

Grando S. A., Pittelkow M. R. & Schallreuter K. U. Adrenergic and cholinergic control in the biology of epidermis: physiological and clinical significance. J. Invest. Dermatol. 126, 1948–1965 (2006). PubMed

Lyukmanova E. N. et al.. Human SLURP-1 and SLURP-2 Proteins Acting on Nicotinic Acetylcholine Receptors Reduce Proliferation of Human Colorectal Adenocarcinoma HT-29 Cells. Acta Naturae 6, 60–66 (2014). PubMed PMC

Summers A. E., Whelan C. J. & Parsons M. E. Nicotinic acetylcholine receptor subunits and receptor activity in the epithelial cell line HT29. Life Sci 72, 2091–2094 (2003). PubMed

Lyukmanova E. N. et al.. NMR structure and action on nicotinic acetylcholine receptors of water-soluble domain of human lynx1. J. Biol. Chem 286, 10618–10627 (2011). PubMed PMC

Nakayama H. et al.. Subtypes of neuronal nicotinic acetylcholine receptors involved in nicotine-induced phosphorylation of extracellular signal-regulated protein kinase in PC12h cells. Neurosci Lett 392, 101–104 (2006). PubMed

King J. R. & Kabbani N. Alpha 7 nicotinic receptor coupling to heterotrimeric G proteins modulates RhoA activation, cytoskeletal motility, and structural growth. J Neurochem, doi: 10.1111/jnc.13660 (2016). PubMed DOI

Grando S. A. Biological functions of keratinocyte cholinergic receptors. J. Investig. Dermatol. Symp. Proc. 2, 41–48 (1997). PubMed

Huang S. et al.. Complex between α-bungarotoxin and an α7 nicotinic receptor ligand-binding domain chimaera. Biochem. J. 454, 303–310 (2013). PubMed PMC

Thomsen M. S. et al.. Lynx1 and Aβ1–42 bind competitively to multiple nicotinic acetylcholine receptor subtypes. Neurobiol. Aging. In press (2016). PubMed

Cachelin A. B. & Rust G. Unusual pharmacology of (+)-tubocurarine with rat neuronal nicotinic acetylcholine receptors containing beta 4 subunits. Mol. Pharmacol. 46, 1168–1174 (1994). PubMed

Smulders C. J. et al.. Cholinergic drugs potentiate human nicotinic alpha4beta2 acetylcholine receptors by a competitive mechanism. Eur. J. Pharmacol. 509, 97–108 (2005). PubMed

Wallace T. L. et al.. RG3487, a novel nicotinic α7 receptor partial agonist, improves cognition and sensorimotor gating in rodents. J. Pharmacol. Exp. Ther. 336, 242–253 (2011). PubMed

Prickaerts J. et al.. EVP-6124, a novel and selective α7 nicotinic acetylcholine receptor partial agonist, improves memory performance by potentiating the acetylcholine response of α7 nicotinic acetylcholine receptors. Neuropharmacology 62, 1099–1110 (2012). PubMed

Tsetlin V. I. & Hucho F. Snake and snail toxins acting on nicotinic acetylcholine receptors: fundamental aspects and medical applications. FEBS Lett 557, 9–13 (2004). PubMed

Lyukmanova E. N. et al.. Bacterial expression, NMR, and electrophysiology analysis of chimeric short/long-chain alpha-neurotoxins acting on neuronal nicotinic receptors. J. Biol. Chem. 282, 24784–24791 (2007). PubMed

Lyukmanova E. N. et al.. Ws-LYNX1 Residues Important for Interaction with Muscle-Type and/or Neuronal Nicotinic Receptors. J. Biol. Chem. 288, 15888–15899 (2013). PubMed PMC

Marquer C. et al.. Structural model of ligand-G protein-coupled receptor (GPCR) complex based on experimental double mutant cycle data: MT7 snake toxin bound to dimeric hM1 muscarinic receptor. J. Biol. Chem. 286, 31661–31675 (2011). PubMed PMC

Li S. X. et al.. Ligand-binding domain of an α7-nicotinic receptor chimera and its complex with agonist. Nat. Neurosci 14, 1253–1259 (2011). PubMed PMC

Hansen S. B. et al.. Structures of Aplysia AChBP complexes with nicotinic agonists and antagonists reveal distinctive binding interfaces and conformations. EMBO J 24, 3635–3646 (2005). PubMed PMC

Shulepko M. A. et al.. Bacterial expression of the water-soluble domain of Lynx1, an endogenous neuromodulator of human nicotinic receptors. Russian J. Bioorg. Chem 37, 543–549 (2011). PubMed

Shulepko M. A. et al.. Human neuromodulator SLURP-1: bacterial expression, binding to muscle-type nicotinic acetylcholine receptor, secondary structure, and conformational heterogeneity in solution. Biochemistry (Mosc) 78, 204–211 (2013).. PubMed

Hogg R. C., Bandelier F., Benoit A., Dosch R. & Bertrand D. An automated system for intracellular and intranuclear injection. J. Neurosci Methods 169, 65–75 (2008). PubMed

Buckley N. J., Bonner T. I., Buckley C. M. & Brann M. R. Antagonist binding properties of five cloned muscarinic receptors expressed in CHO-K1 cells. Mol Pharmacol 35, 469–76. (1989). PubMed

Cavanagh J., Fairbrother W. J., Palmer A. G., Skelton N. J. & Rance M. Protein NMR Spectroscopy Principles and Practice, 2nd Ed. 781–817. (Academic Press, New York, USA, 2006).

Güntert P. Automated NMR structure calculation with CYANA. Methods Mol. Biol. 278, 353–378 (2004). PubMed

Martí-Renom M. A. et al.. Comparative protein structure modeling of genes and genomes. Annu Rev. Biophys. Biomol. Struct 29, 291–325 (2000). PubMed

Hess B., Kutzner C., van der Spoel D. & Lindahl E. GROMACS 4: Algorithms for highly efficient, load-balanced, and stable molecular simulation. J. Chem. Theory Comput. 4, 435–447 (2008). PubMed

Chen R., Li L. & Weng Z. ZDOCK: an initial-stage proteindocking algorithm. Proteins 52, 80–87 (2003). PubMed

Pyrkov T. V., Chugunov A. O., Krylov N. A., Nolde D. E. & Efremov R. G. PLATINUM: a web tool for analysis of hydrophobic/hydrophilic organization of biomolecular complexes. Bioinformatics 25, 1201–1202 (2009). PubMed

Thomsen M. S. et al.. α7 and β2 Nicotinic Acetylcholine Receptor Subunits Form Heteromeric Receptor Complexes that Are Expressed in the Human Cortex and Display Distinct Pharmacological Properties. PLoS One 10, e0130572 (2015). PubMed PMC

Chavez-Noriega L. E. et al.. Pharmacological Characterization of Recombinant Human Neuronal Nicotinic Acetylcholine Receptors H Alpha 2 Beta 2, H Alpha 2 Beta 4, H Alpha 3 Beta 2, H Alpha 3 Beta 4, H Alpha 4 Beta 2, H Alpha 4 Beta 4 and H Alpha 7 Expressed in Xenopus Oocytes. J. Pharmacol. Exp. Ther. 280, 346–56 (1997). PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...