Molecular, Structural and Immunological Characterization of Der p 18, a Chitinase-Like House Dust Mite Allergen

. 2016 ; 11 (8) : e0160641. [epub] 20160822

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid27548813

BACKGROUND: The house dust mite (HDM) allergen Der p 18 belongs to the glycoside hydrolase family 18 chitinases. The relevance of Der p 18 for house dust mite allergic patients has only been partly investigated. OBJECTIVE: To perform a detailed characterization of Der p 18 on a molecular, structural and immunological level. METHODS: Der p 18 was expressed in E. coli, purified to homogeneity, tested for chitin-binding activity and its secondary structure was analyzed by circular dichroism. Der p 18-specific IgG antibodies were produced in rabbits to localize the allergen in mites using immunogold electron microscopy and to search for cross-reactive allergens in other allergen sources (i.e. mites, crustacea, mollusca and insects). IgE reactivity of rDer p 18 was tested with sera from clinically well characterized HDM-allergic patients (n = 98) and its allergenic activity was analyzed in basophil activation experiments. RESULTS: Recombinant Der p 18 was expressed and purified as a folded, biologically active protein. It shows weak chitin-binding activity and partial cross-reactivity with Der f 18 from D. farinae but not with proteins from the other tested allergen sources. The allergen was mainly localized in the peritrophic matrix of the HDM gut and to a lower extent in fecal pellets. Der p 18 reacted with IgE from 10% of mite allergic patients from Austria and showed allergenic activity when tested for basophil activation in Der p 18-sensitized patients. CONCLUSION: Der p 18 is a rather genus-specific minor allergen with weak chitin-binding activity but exhibits allergenic activity and therefore should be included in diagnostic test panels for HDM allergy.

Zobrazit více v PubMed

Heinzerling LM, Burbach GJ, Edenharter G, Bachert C, Bindslev-Jensen C, et al. (2009) GA(2)LEN skin test study I: GA(2)LEN harmonization of skin prick testing: novel sensitization patterns for inhalant allergens in Europe. Allergy 64: 1498–1506. 10.1111/j.1398-9995.2009.02093.x PubMed DOI

Blomme K, Tomassen P, Lapeere H, Huvenne W, Bonny M, et al. (2013) Prevalence of allergic sensitization versus allergic rhinitis symptoms in an unselected population. Int Arch Allergy Immunol 160: 200–207. 10.1159/000339853 PubMed DOI

Wang HY, Gao ZS, Zhou X, Dai Y, Yao W, et al. (2015) Evaluation of the Role of IgE Responses to Der p 1 and Der p 2 in Chinese House Dust Mite-Allergic Patients. Int Arch Allergy Immunol 167: 203–210. 10.1159/000438724 PubMed DOI

Boulet LP, Turcotte H, Laprise C, Lavertu C, Bedard PM, et al. (1997) Comparative degree and type of sensitization to common indoor and outdoor allergens in subjects with allergic rhinitis and/or asthma. Clin Exp Allergy 27: 52–59. PubMed

Hervas D, Pons J, Mila J, Matamoros N, Hervas JA, et al. (2013) Specific IgE levels to Dermatophagoides pteronyssinus are associated with meteorological factors. Int Arch Allergy Immunol 160: 383–386. 10.1159/000342444 PubMed DOI

Thomas WR (2010) Geography of house dust mite allergens. Asian Pac J Allergy Immunol 28: 211–224. PubMed

Heymann PW, Chapman MD, Platts-Mills TA (1986) Antigen Der f I from the dust mite Dermatophagoides farinae: structural comparison with Der p I from Dermatophagoides pteronyssinus and epitope specificity of murine IgG and human IgE antibodies. J Immunol 137: 2841–2847. PubMed

Yasueda H, Mita H, Akiyama K, Shida T, Ando T, et al. (1993) Allergens from Dermatophagoides mites with chymotryptic activity. Clin Exp Allergy 23: 384–390. PubMed

Radauer C, Nandy A, Ferreira F, Goodman RE, Larsen JN, et al. (2014) Update of the WHO/IUIS Allergen Nomenclature Database based on analysis of allergen sequences. Allergy 69: 413–419. PubMed

Vrtala S, Huber H, Thomas WR (2014) Recombinant house dust mite allergens. Methods 66: 67–74. 10.1016/j.ymeth.2013.07.034 PubMed DOI PMC

Jacquet A (2013) Innate immune responses in house dust mite allergy. ISRN Allergy 2013: 735031 10.1155/2013/735031 PubMed DOI PMC

Thomas WR, Heinrich TK, Smith WA, Hales BJ (2007) Pyroglyphid house dust mite allergens. Protein Pept Lett 14: 943–953. PubMed

Nandy A, Wald M, Augustin S, Pump L, Kahlert H, et al. (2013) Recombinant allergens for SIT of mite allergy. Arb Paul Ehrlich Inst Bundesinstitut Impfstoffe Biomed Arzneim Langen Hess 97: 140–147. PubMed

Weghofer M, Grote M, Resch Y, Casset A, Kneidinger M, et al. (2013) Identification of Der p 23, a Peritrophin-like Protein, as a New Major Dermatophagoides pteronyssinus Allergen Associated with the Peritrophic Matrix of Mite Fecal Pellets. J Immunol 190: 3059–3067. 10.4049/jimmunol.1202288 PubMed DOI PMC

Hales BJ, Elliot CE, Chai LY, Pearce LJ, Tipayanon T, et al. (2013) Quantitation of IgE binding to the chitinase and chitinase-like house dust mite allergens Der p 15 and Der p 18 compared to the major and mid-range allergens. Int Arch Allergy Immunol 160: 233–240. 10.1159/000339760 PubMed DOI

Zakzuk J, Benedetti I, Fernandez-Caldas E, Caraballo L (2014) The influence of chitin on the immune response to the house dust mite allergen Blo T 12. Int Arch Allergy Immunol 163: 119–129. 10.1159/000356482 PubMed DOI

O'Neil SE, Heinrich TK, Hales BJ, Hazell LA, Holt DC, et al. (2006) The chitinase allergens Der p 15 and Der p 18 from Dermatophagoides pteronyssinus. Clin Exp Allergy 36: 831–839. PubMed

McCall C, Hunter S, Stedman K, Weber E, Hillier A, et al. (2001) Characterization and cloning of a major high molecular weight house dust mite allergen (Der f 15) for dogs. Vet Immunol Immunopathol 78: 231–247. PubMed

Weber E, Hunter S, Stedman K, Dreitz S, Olivry T, et al. (2003) Identification, characterization, and cloning of a complementary DNA encoding a 60-kd house dust mite allergen (Der f 18) for human beings and dogs. J Allergy Clin Immunol 112: 79–86. PubMed

Banerjee S, Resch Y, Chen KW, Swoboda I, Focke-Tejkl M, et al. (2015) Der p 11 Is a Major Allergen for House Dust Mite-Allergic Patients Suffering from Atopic Dermatitis. J Invest Dermatol 135: 102–109. 10.1038/jid.2014.271 PubMed DOI PMC

Arnold K, Bordoli L, Kopp J, Schwede T (2006) The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics (Oxford, England) 22: 195–201. PubMed

Lyskov S, Gray JJ (2008) The RosettaDock server for local protein-protein docking. Nucleic Acids Res 36: W233–238. 10.1093/nar/gkn216 PubMed DOI PMC

Weghofer M, Grote M, Dall'Antonia Y, Fernandez-Caldas E, Krauth MT, et al. (2008) Characterization of folded recombinant Der p 5, a potential diagnostic marker allergen for house dust mite allergy. Int Arch Allergy Immunol 147: 101–109. 10.1159/000135696 PubMed DOI

Niespodziana K, Focke-Tejkl M, Linhart B, Civaj V, Blatt K, et al. (2011) A hypoallergenic cat vaccine based on Fel d 1-derived peptides fused to hepatitis B PreS. J Allergy Clin Immunol 127: 1562–1570 e1566. 10.1016/j.jaci.2011.02.004 PubMed DOI PMC

Fling SP, Gregerson DS (1986) Peptide and protein molecular weight determination by electrophoresis using a high-molarity tris buffer system without urea. Anal Biochem 155: 83–88. PubMed

Chen KW, Fuchs G, Sonneck K, Gieras A, Swoboda I, et al. (2008) Reduction of the in vivo allergenicity of Der p 2, the major house-dust mite allergen, by genetic engineering. Mol Immunol 45: 2486–2498. 10.1016/j.molimm.2008.01.006 PubMed DOI

Hemmer W, Focke M, Marzban G, Swoboda I, Jarisch R, et al. (2010) Identification of Bet v 1-related allergens in fig and other Moraceae fruits. Clin Exp Allergy 40: 679–687. 10.1111/j.1365-2222.2010.03486.x PubMed DOI

Whitmore L, Wallace BA (2004) DICHROWEB, an online server for protein secondary structure analyses from circular dichroism spectroscopic data. Nucleic Acids Res 32: W668–673. PubMed PMC

Valenta R, Duchene M, Ebner C, Valent P, Sillaber C, et al. (1992) Profilins constitute a novel family of functional plant pan-allergens. J Exp Med 175: 377–385. PubMed PMC

Nolte H, Maloney J, Nelson HS, Bernstein DI, Lu S, et al. (2015) Onset and dose-related efficacy of house dust mite sublingual immunotherapy tablets in an environmental exposure chamber. J Allergy Clin Immunol 135: 1494–1501 e1496. 10.1016/j.jaci.2014.12.1911 PubMed DOI

Lupinek C, Wollmann E, Baar A, Banerjee S, Breiteneder H, et al. (2014) Advances in allergen-microarray technology for diagnosis and monitoring of allergy: the MeDALL allergen-chip. Methods 66: 106–119. 10.1016/j.ymeth.2013.10.008 PubMed DOI PMC

Resch Y, Weghofer M, Seiberler S, Horak F, Scheiblhofer S, et al. (2011) Molecular characterization of Der p 10: a diagnostic marker for broad sensitization in house dust mite allergy. Clin Exp Allergy 41: 1468–1477. 10.1111/j.1365-2222.2011.03798.x PubMed DOI PMC

Hauswirth AW, Natter S, Ghannadan M, Majlesi Y, Schernthaner GH, et al. (2002) Recombinant allergens promote expression of CD203c on basophils in sensitized individuals. J Allergy Clin Immunol 110: 102–109. PubMed

Shen Z, Jacobs-Lorena M (1998) A type I peritrophic matrix protein from the malaria vector Anopheles gambiae binds to chitin. Cloning, expression, and characterization. J Biol Chem 273: 17665–17670. PubMed

Elvin CM, Vuocolo T, Pearson RD, East IJ, Riding GA, et al. (1996) Characterization of a major peritrophic membrane protein, peritrophin-44, from the larvae of Lucilia cuprina. cDNA and deduced amino acid sequences. J Biol Chem 271: 8925–8935. PubMed

Casu R, Eisemann C, Pearson R, Riding G, East I, et al. (1997) Antibody-mediated inhibition of the growth of larvae from an insect causing cutaneous myiasis in a mammalian host. Proc Natl Acad Sci U S A 94: 8939–8944. PubMed PMC

Rao FV, Houston DR, Boot RG, Aerts JM, Hodkinson M, et al. (2005) Specificity and affinity of natural product cyclopentapeptide inhibitors against A. fumigatus, human, and bacterial chitinases. Chem Biol 12: 65–76. PubMed

Dahiya N, Tewari R, Hoondal GS (2006) Biotechnological aspects of chitinolytic enzymes: a review. Appl Microbiol Biotechnol 71: 773–782. PubMed

Merzendorfer H, Zimoch L (2003) Chitin metabolism in insects: structure, function and regulation of chitin synthases and chitinases. J Exp Biol 206: 4393–4412. PubMed

Johansen JS (2006) Studies on serum YKL-40 as a biomarker in diseases with inflammation, tissue remodelling, fibroses and cancer. Dan Med Bull 53: 172–209. PubMed

Zhu Z, Zheng T, Homer RJ, Kim YK, Chen NY, et al. (2004) Acidic mammalian chitinase in asthmatic Th2 inflammation and IL-13 pathway activation. Science 304: 1678–1682. PubMed

Chupp GL, Lee CG, Jarjour N, Shim YM, Holm CT, et al. (2007) A chitinase-like protein in the lung and circulation of patients with severe asthma. N Engl J Med 357: 2016–2027. PubMed

Elias JA, Homer RJ, Hamid Q, Lee CG (2005) Chitinases and chitinase-like proteins in T(H)2 inflammation and asthma. J Allergy Clin Immunol 116: 497–500. PubMed

Diaz-Perales A, Blanco C, Sanchez-Monge R, Varela J, Carrillo T, et al. (2003) Analysis of avocado allergen (Prs a 1) IgE-binding peptides generated by simulated gastric fluid digestion. J Allergy Clin Immunol 112: 1002–1007. PubMed

Blanco C (2003) Latex-fruit syndrome. Current allergy and asthma reports 3: 47–53. PubMed

Coulson AF (1994) A proposed structure for 'family 18' chitinases. A possible function for narbonin. FEBS Lett 354: 41–44. PubMed

Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, et al. (2009) The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics. Nucleic Acids Res 37: D233–238. 10.1093/nar/gkn663 PubMed DOI PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...