Room-temperature tetragonal non-collinear Heusler antiferromagnet Pt2MnGa
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
27561795
PubMed Central
PMC5007462
DOI
10.1038/ncomms12671
PII: ncomms12671
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Antiferromagnetic spintronics is a rapidly growing field, which actively introduces new principles of magnetic storage. Despite that, most applications have been suggested for collinear antiferromagnets. In this study, we consider an alternative mechanism based on long-range helical order, which allows for direct manipulation of the helicity vector. As the helicity of long-range homogeneous spirals is typically fixed by the Dzyaloshinskii-Moriya interactions, bi-stable spirals (left- and right-handed) are rare. Here, we report a non-collinear room-temperature antiferromagnet in the tetragonal Heusler group. Neutron diffraction reveals a long-period helix propagating along its tetragonal axis. Ab-initio analysis suggests its pure exchange origin and explains its helical character resulting from a large basal plane magnetocrystalline anisotropy. The actual energy barrier between the left- and right-handed spirals is relatively small and might be easily overcome by magnetic pulse, suggesting Pt2MnGa as a potential candidate for non-volatile magnetic memory.
Department of Structure Analysis Institute of Physics ASCR Na Slovance 2 Praha 18221 Czech Republic
Dresden High Magnetic Field Laboratory Helmholtz Zentrum Dresden Rossendorf Dresden D 01328 Germany
Institut Laue Langevin BP 156 Grenoble Cedex 9 38042 France
Max Planck Institute for Chemical Physics of Solids Nöthnitzer Str 40 Dresden D 01187 Germany
Zobrazit více v PubMed
Jungwirth T., Marti X., Wadley P. & Wunderlich J. Antiferromagnetic spintronics. Nat. Nanotechnol. 11, 231–241 (2016). PubMed
Wadley P. et al.. Electrical switching of an antiferromagnet. Science 351, 192404 (2016). PubMed
Barthem V. M. T. S., Colin C. V., Mayaffre H., Julien M.-H. & Givord D. Revealing the properties of Mn2Au for antiferromagnetic spintronics. Nat. Commun. 4, 2892 (2013). PubMed
Wadley P. et al.. Tetragonal phase of epitaxial room-temperature antiferromagnet CuMnAs. Nat. Commun. 4, 2322 (2013). PubMed
Park B. G. et al.. A spin-valve-like magnetoresistance of an antiferromagnet-based tunnel junction. Nat. Mater. 10, 347–351 (2011). PubMed
Núñez A. S., Duine R. A., Haney P. & MacDonald A. H. Theory of spin torques and giant magnetoresistance in antiferromagnetic metals. Phys. Rev. B 73, 214426 (2006).
Gomonay H. V. & Loktev V. M. Spin transfer and current-induced switching in antiferromagnets. Phys. Rev. B 81, 144427 (2010).
Gomonay E. V. & Loktev V. M. Spintronics of antiferromagnetic systems. J. Low Temp. Phys. 40, 17 (2014).
Gomonay O. Berry-phase effects and electronic dynamics in a noncollinear antiferromagnetic texture. Phys. Rev. B 91, 144421 (2015).
Chen H., Niu Q. & MacDonald A. H. Anomalous Hall effect arising from noncollinear antiferromagnetism. Phys. Rev. Lett. 112, 017205 (2014). PubMed
Kübler J. & Felser C. Non-collinear antiferromagnets and the anomalous Hall effect. Europhys. Lett. 108, 67001 (2014).
Seemann M., Ködderitzsch D., Wimmer S. & Ebert H. Symmetry-imposed shape of linear response tensors. Phys. Rev. B 92, 155138 (2015).
Katsura H., Nagaosa N. & Balatsky A. V. Spin current and magnetoelectric effect in noncollinear magnets. Phys. Rev. Lett. 95, 057205 (2005). PubMed
Kenzelmann M. et al.. Magnetic inversion symmetry breaking and ferroelectricity in TbMnO3. Phys. Rev. Lett. 95, 087206 (2005). PubMed
Mostovoy M. Ferroelectricity in spiral magnets. Phys. Rev. Lett. 96, 067601 (2006). PubMed
Sergienko I. A. & Dagotto E. Role of the Dzyaloshinskii–Moriya interaction in multiferroic perovskites. Phys. Rev. B 73, 094434 (2006).
Arima T. Ferroelectricity induced by proper-screw type magnetic order. J. Phys. Soc. Jpn 76, 073702 (2007).
Johnson R. D. et al.. Giant improper ferroelectricity in the ferroaxial magnet CaMn7O12. Phys. Rev. Lett. 108, 067201 (2012). PubMed
Menzel M. et al.. Information transfer by vector spin chirality in finite magnetic chains. Phys. Rev. Lett. 108, 197204 (2012). PubMed
von Bergmann K., Kubetzka A., Pietzsch O. & Wiesendanger R. Interface-induced chiral domain walls, spin spirals and skyrmions revealed by spin-polarized scanning tunneling microscopy. J. Phys.: Condens. Matter 26, 394002 (2014). PubMed
Grigoriev S. V. et al.. Chiral properties of structure and magnetism in Mn1−xFexGe compounds: when the left and the right are fighting, who wins? Phys. Rev. Lett. 110, 207201 (2013). PubMed
Hames F. A. & Crangle J. Ferromagnetism in Heusler-type alloys based on platinum-group or palladium-group metals. J. Appl. Phys. 42, 1336–1338 (1971).
Siewert M. et al.. Designing shape-memory Heusler alloys from first-principles. Appl. Phys. Lett. 99, 191904 (2011).
Feng L., Liu E. K., Zhang W. X., Wang W. H. & Wu G. H. First-principle investigation of electronic structure, magnetism and phase stability of Heusler-type Pt2−xMn1+xGa alloys magnetic-texture-controlled transverse spin injection. J. Magn. Magn. Mater. 377, 40–43 (2015).
Roy T. & Chakrabarti A. Possibility of martensite transition in Pt–Y–Ga (Y=Cr, Mn, and Fe) system: an ab-initio calculation of the bulk mechanical, electronic and magnetic properties. J. Magn. Magn. Mater. 401, 929–937 (2016).
Meshcheriakova O. et al.. Large noncollinearity and spin reorientation in the novel Mn2RhSn Heusler magnet. Phys. Rev. Lett. 113, 087203 (2014). PubMed
Rodriguez-Carvajal J. Recent advances in magnetic structure determination by neutron powder diffraction. Physica B 192, 55–69 (1993).
Vosko S. H., Wilk L. & Nusair M. Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can. J. Phys. 58, 1200–1211 (1980).