Identification of Quantitative Trait Loci Controlling Root and Shoot Traits Associated with Drought Tolerance in a Lentil (Lens culinaris Medik.) Recombinant Inbred Line Population

. 2016 ; 7 () : 1174. [epub] 20160823

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid27602034

Drought is one of the major abiotic stresses limiting lentil productivity in rainfed production systems. Specific rooting patterns can be associated with drought avoidance mechanisms that can be used in lentil breeding programs. In all, 252 co-dominant and dominant markers were used for Quantitative Trait Loci (QTL) analysis on 132 lentil recombinant inbred lines based on greenhouse experiments for root and shoot traits during two seasons under progressive drought-stressed conditions. Eighteen QTLs controlling a total of 14 root and shoot traits were identified. A QTL-hotspot genomic region related to a number of root and shoot characteristics associated with drought tolerance such as dry root biomass, root surface area, lateral root number, dry shoot biomass and shoot length was identified. Interestingly, a QTL (QRSratioIX-2.30) related to root-shoot ratio, an important trait for drought avoidance, explaining the highest phenotypic variance of 27.6 and 28.9% for the two consecutive seasons, respectively, was detected. This QTL was closed to the co-dominant SNP marker TP6337 and also flanked by the two SNP TP518 and TP1280. An important QTL (QLRNIII-98.64) related to lateral root number was found close to TP3371 and flanked by TP5093 and TP6072 SNP markers. Also, a QTL (QSRLIV-61.63) associated with specific root length was identified close to TP1873 and flanked by F7XEM6b SRAP marker and TP1035 SNP marker. These two QTLs were detected in both seasons. Our results could be used for marker-assisted selection in lentil breeding programs targeting root and shoot characteristics conferring drought avoidance as an efficient alternative to slow and labor-intensive conventional breeding methods.

Zobrazit více v PubMed

Abramoff M. D., Magalhaes P. J., Ram S. J. (2004). Image processing with Image J. Biophotonics. Inter. 11, 36–42.

Arumuganathan K., Earle E. D. (1991). Nuclear DNA content of some important plant species. Plant Mol. Biol. Rep. 9, 208–218. 10.1007/BF02672069 DOI

Aswaf A., Blair M. (2012). Quantitative trait loci for rooting pattern traits of common beans grown under drought stress versus non-stress conditions. Mol. Breed. 30, 681–695. 10.1007/s11032-011-9654-y DOI

Ates D., Sever T., Aldemir S., Yagmur B., Temel H. Y., Kaya H. B., et al. . (2016). Identification of QTLs controlling genes for Se uptake in lentil seeds. PLoS ONE 11:e0149210. 10.1371/journal.pone.0149210 PubMed DOI PMC

Brensha W., Kantartzi S. K., Meksem K., Grier R. L., Barakat A., Lightfoot D. A., et al. (2012). Genetic analysis of root and shoot traits in the “Essex” by “Forrest” recombinant inbred line (RIL) population of soybean (Glycine max (L.) Merr.). J. Plant Genome Sci. 1, 1–9. 10.5147/jpgs.2012.0051 DOI

Cartwright D. A., Troggio M., Velasco R., Gutin A. (2007). Genetic mapping in the presence of genotyping errors. Genetics 176, 2521–2527. 10.1534/genetics.106.063982 PubMed DOI PMC

Catchen J., Hohenlohe P. A., Bassham S., Amores A., Cresko W. A. (2013). Stacks: an analysis tool set for population genomics. Mol. Ecol. 22, 3124–3140. 10.1111/mec.12354 PubMed DOI PMC

Catchen J. M., Amores A., Hohenlohe P., Cresko W., Postlethwait J. H. (2011). Stacks: building and genotyping loci de novo from short-read sequences. G3: Genes Genom. Genet. 1, 171–182. 10.1534/g3.111.000240 PubMed DOI PMC

Chen W., Zhang Y., Liu X., Chen B., Tu J., Tingdong F. (2007). Detection of QTL for six yield-related traits in oilseed rape (Brassica napus) using DH and immortalized F(2) populations. Theor. Appl. Genet. 115, 849–858. 10.1007/s00122-007-0613-2 PubMed DOI

Cichy K., Blair M. W., Mendoza C. H. G., Snapp S. S., Kelly J. D. (2009). QTL analysis of root architecture traits and low phosphorus tolerance in an Andean bean population. Crop Sci. 49, 59–68. 10.2135/cropsci2008.03.0142 DOI

Comas L. H., Becker S. R., Cruz V. M. V., Byrne P. F., Dierig D. A. (2013). Root traits contributing to plant productivity under drought. Front. Plant Sci. 4:442. 10.3389/fpls.2013.00442 PubMed DOI PMC

Day D. (1991). Grower Digest, Vol. 12. London: Growing in Perlite. Grower Publications Ltd.

De Keyser E., Yan Shu Q., Van Bockstaele E., De Riek J. (2010). Multipoint-likelihood maximization mapping on 4 segregating populations to achieve an integrated framework map for QTL analysis in pot azalea (Rhododendron simsii hybrids). BMC Mol. Biol. 11:1. 10.1186/1471-2199-11-1 PubMed DOI PMC

De Riek J., Calsyn E., Everaert I., Van Bockstaele E., De Loose M. (2001). AFLP based alternatives for the assessment of distinctness, uniformity and stability of sugar beet varieties. Theor. Appl. Genet. 103, 1254–1265. 10.1007/s001220100710 DOI

Duran Y., Perez De La Vega M. (2004). Assessment of genetic variation and species relationships in a collection of Lens using RAPD and ISSR. Span J. Agric. Res. 2, 538–544. 10.5424/sjar/2004024-110 DOI

Eujayl I., Baum M., Powell W., Erskine W., Pehu E. (1998). A genetic linkage map of lentil (Lens sp.) based on RAPD and AFLP markers using recombinant inbred lines. Theor. Appl. Genet. 97, 83–89. 10.1007/s001220050869 DOI

FAO (2015). International Year of Pulses 2016. Available online at: http://www.fao.org/pulses-2016/en/ (Accessed on: 24 Nov 2015).

Gaudet M., Jorge V., Paolucci I., Beritognolo I., Scarascia Mugnozza G., Sabatti M. (2007). Genetic linkage maps of Populus nigra L. including AFLPs, SSRs, SNPs, and sex trait. Tree Genet. Genom. 4, 25–36. 10.1007/s11295-007-0085-1 DOI

Gaur P. M., Krishnamurthy L., Kashiwagi J. (2008). Improving drought avoidance root traits in chickpea (Cicer arietinum)—current status of research at ICRISAT. Plant Prod. Sci. 11, 3–11. 10.1626/pps.11.3 DOI

Grusak M. A., Coyne C. J. (2009). Variation for seed minerals and protein concentrations in diverse germplasm of lentilm in Paper Presented at North America Pulse Improvement Association, 20th Biennial Meeting (Fort Collins, CO: ), 11.

Gupta M., Verma B., Kumar N., Chahota R. K., Rathour R., Sharma S. K., et al. . (2012). Construction of intersubspecific molecular genetic map of lentil based on ISSR, RAPD and SSR markers. J. Genet. 91, 279–287. 10.1007/s12041-012-0180-4 PubMed DOI

Hamwieh A., Udupa S. M., Choumane W., Sarker A., Dreyer F., Jung C., et al. . (2005). A genetic linkage map of Lens sp. based on microsatellite and AFLP markers and the localization of fusarium vascular wilt resistance. Theor. Appl. Genet. 110, 669–677. 10.1007/s00122-004-1892-5 PubMed DOI

Idrissi O., Houasli C. H., Udupa S. M., De Keyser E., Van Damme P., De Riek J. (2015a). Genetic variability for root and shoot traits in a lentil (Lens culinaris Medik.) recombinant inbred line population and their association with drought tolerance. Euphytica 204, 693–709. 10.1007/s10681-015-1373-8 DOI

Idrissi O., Udupa S. M., De Keyser E., Van Damme P., De Riek J. (2015b). Functional genetic diversity analysis and identification of associated simple sequence repeats and amplified fragment length polymorphism markers to drought tolerance in lentil (Lens culinaris ssp. culinaris Medicus) Landraces. Plant Mol. Biol. Rep. 34, 659–680. 10.1007/s11105-015-0940-4 DOI

Idrissi O., Udupa S. M., Houasli C. H., De Keyser E., Van Damme P., De Riek J. (2015c). Genetic diversity analysis of Moroccan lentil (Lens culinaris Medik.) landraces using simple sequence repeat and amplified fragment length polymorphisms reveals functional adaptation toward agro-environmental origins. Plant Breed. 134, 322–332. 10.1111/pbr.12261 DOI

Iglesias-García R., Prats E., Fondevilla S., Satovic Z., Rubiales D. (2015). Quantitative trait loci associated to drought adaptation in pea (Pisum sativum L.). Plant Mol. Biol. Rep. 33, 1768–1778. 10.1007/s11105-015-0872-z DOI

Kashiwagi J., Krishnamurthy L., Gaur P. M., Shandra S., Upadhyaya H. D. (2014). Estimation of gene effects of the drought avoidance root characteristics in chickpea (C. arietinum L.). Field Crop Res. 105, 64–69. 10.1007/s00122-013-2230-6 DOI

Kashiwagi J., Krishnamurthy L., Upadhyaya H. D., Krishna H., Chandra S., Vadez V., et al. (2005). Genetic variability of drought-avoidance root traits in the mini-core germplasm collection of chickpea (Cicer arietinum L.). Euphytica 146, 213–222. 10.1007/s10681-005-9007-1 DOI

Kaur S., Cogan N. O. I., Stephens A., Noy D., Butsch M., Forster J. W., et al. . (2014). EST-SNP discovery and dense genetic mapping in lentil (Lens culinaris Medik.) enable candidate gene selection for boron tolerance. Theor. Appl. Genet. 127, 703–713. 10.1007/s00122-013-2252-0 PubMed DOI

Kim S. (2007). Mapping unexplored genome: a genetic linkage map of the woody Sonchusalliance (Asteraceae: Sonchineae) in the Macaronesian islands. J. Hered. 98, 293–299. 10.1093/jhered/esm052 PubMed DOI

Li G., Quiros C. F. (2001). Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica. Theor. Appl. Genet. 103, 455–461. 10.1007/s001220100570 DOI

Lincoln S. E., Lander E. (1992). Systematic detection of errors in genetic linkage data. Genomics 14, 604–610. 10.1016/S0888-7543(05)80158-2 PubMed DOI

Lobet G., Pagès L., Draye X. (2011). A novel image analysis toolbox enabling quantitative analyses of root system architecture. Plant Physiol. 157, 29–39. 10.1104/pp.111.179895 PubMed DOI PMC

Malhotra R. S., Sarker A., Saxena M. C. (2004). Drought tolerance in chickpea and lentil-present status and future strategies, in Challenges and Strategies for Dryland Agriculture, eds Rao S. C., Ryan J. (Wisconsin, EI: CSSA Special Publication no. 32, Crop Science Society of America and American Society of Agronomy; ), 257–273.

Manavalan L. P., Prince S. J., Musket T. A., Chaky J., Deshmukh R., Vuong T. D., et al. . (2015). Identification of novel QTL governing root architectural traits in an interspecific soybean population. PLoS ONE 10:e0120490. 10.1371/journal.pone.0120490 PubMed DOI PMC

Muys C., Noelle C., Hienpont T., Dauchot N., Maudoux O., Draye X., et al. (2014). Integration of AFLPs, SSRs and SNPs markers into a new genetic map of industrial chicory (Cichorium Intybus L. var. sativum). Plant Breed. 133, 130–137. 10.1111/pbr.12113 DOI

Poland J. A., Brown P. J., Sorrells M. E., Jannink J. (2012). Development of high density maps for barley and wheat using a novel two-enzyme genotyping by sequencing approach. PLoS ONE 7:e32253. 10.1371/journal.pone.0032253 PubMed DOI PMC

Rabah Nasser R. (2009). Physiological Aspects of the Response to Elevated CO2 in Lentils (Lens culinaris Medic.). Dissertation thesis: School of Biological Sciences of the University of Plymouth, Devon.

Robarts D. W. H., Wolfe A. D. (2014). Sequence-Related Amplified Polymorphism (SRAP) Markers: a potential resource for studies in plant molecular biology. Appl. Plant Sci. 2:1400017. 10.3732/apps.1400017 PubMed DOI PMC

Rubeena Ford, R., Taylor P. W. (2003). Construction of an intraspecific linkage map of lentil (Lens culinaris ssp. culinaris). Theor. Appl. Genet. 107, 910–916. 10.1007/s00122-003-1326-9 PubMed DOI

Ruta N. (2008). Quantitative Trait Loci Controlling Root and Shoot Traits of Maize under Drought Stress. Dissertation thesis, Swiss Federal Institute of Technology Zurich, Zurich.

Saha G. C., Sarker A., Chen W., Vandemark G. J., Muehlbauer F. J. (2010). Inheritance and linkage map positions of genes conferring resistance to Stemphylium Blight in lentil. Crop Sci. 50, 1831–1839. 10.2135/cropsci2009.12.0709 DOI

Saha G. C., Sarker A., Chen W., Vandemark G. J., Muehlbauer F. J. (2013). Inheritance and linkage map positions of genes conferring agromorphological traits in Lens culinaris Medik. Int. J. Agron. 2013 10.1155/2013/618926 DOI

Sarker A., Aydogan A., Chandra S., Kharrat M., Sabaghpour S. (2009). Genetic enhancement for yield and yield stability, in The Lentil: Botany, Production and Uses, eds Erskine W., Muehlbauer F. J., Sarker A., Sharma B. (Oxfordshire: CAB International; ), 102–120.

Sarker A., Erskine W., Singh M. (2005). Variation in shoot and root characteristics and their association with drought tolerance in lentil landraces. Genet. Resour. Crop. Evol. 52, 89–97. 10.1007/s10722-005-0289-x DOI

Sayed M. A. A. (2011). QTL Analysis for Drought Tolerance Related to Root and Shoot Traits in Barley (Hordeum vulgare L.). Dissertation thesis, Institut für Nutzpflanzenwissenschaften und Ressourcenschutz, Hohen Landwirtschaftlichen Fakultät der Rheinischen Friedrich-Wilhelms-Universität Bonn, Bonn.

Sharpe A. G., Ramsay L., Sanderson L. A., Fedoruk M. J., Clarke W. E., Li R., et al. . (2013). Ancient orphan crop joins modern era: gene-based SNP discovery and mapping in lentil. BMC Genomics 14:192. 10.1186/1471-2164-14-192 PubMed DOI PMC

Singh D. H., Dikshit H. K., Singh R. A. (2013). A new phenotyping technique for screening for drought tolerance in lentil (Lens culinaris Medik.). Plant Breed. 132, 185–190. 10.1111/pbr.12033 DOI

Stoddard F. L., Balko C., Erskine W., Khan H. R., Link W., Sarker A. (2006). Screening techniques and sources of resistance to abiotic stresses in cool-season food legumes. Euphytica 147, 167–186. 10.1007/s10681-006-4723-8 DOI

Thavarajah D., Thavarajah P., Sarker A., Materne M., Vandemark G., Shrestha R., et al. (2011). A global survey of effects of genotype and environment on selenium concentration in lentils (Lens culinaris L.): implications for nutritional fortification strategies. Food Chem. 125, 72–76. 10.1016/j.foodchem.2010.08.038 DOI

Ting N. C., Jansen J., Mayes S., Massawe F., Sambanthamurthi R., Ooi L. C. L., et al. . (2014). High density SNP and SSR-based genetic maps of two independent oil palm hybrids. BMC Genomics 15:309. 10.1186/1471-2164-15-309 PubMed DOI PMC

Vadez V., Rao S., Kholova J., Krishnamurthy L., Kashiwaji J., Ratnakumar P., et al. (2008). Root research for drought tolerance in legumes: quo-vadis? J. Food Legumes 21, 77–85.

Van Ooijen J. W. (2004). MapQTL® 5, Software for the Mapping of Quantitative Trait Loci in Experimental Populations. Wageningen: Kyasma B.V.

Van Ooijen J. W. (2006). JoinMap® 4, Software for the Calculation of Genetic Linkage Maps in Experimental Populations. Wageningen: Kyasma B.V.

Varshney R. K., Thudi M., Nayak S. N., Gaur P. M., Kashiwagi J., Krishnamurthy L., et al. . (2014). Genetic dissection of drought tolerance in chickpea (Cicer arietinum L.). Theor. Appl. Genet. 127, 445–462. 10.1007/s00122-013-2230-6 PubMed DOI PMC

Verslues P. E., Agarwal M., Agarwal S. K., Zhu J., Zhu J. K. (2006). Methods and concepts in quantifying resistance to drought, salt and freezing, abiotic stresses that affect plant water status. Plant J. 45, 523–539. 10.1111/j.1365-313X.2005.02593.x PubMed DOI

Voorrips R. E. (2002). MapChart©: Software for the graphical presentation of linkage maps and QTLs. J. Hered. 93, 77–78. 10.1093/jhered/93.1.77 PubMed DOI

Vos P., Hogers R., Bleeker M., Reijans M., Van de Lee T., Hornes M., et al. . (1995). AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res. 23, 4407–4414. 10.1093/nar/23.21.4407 PubMed DOI PMC

Wong M. M., Gujaria-Verma N., Ramsay L., Yuan H. Y., Caron C., Diapari M., et al. . (2015). Classification and characterization of species within the genus lens using genotyping-by-sequencing (GBS). PLoS ONE 27:e0122025. 10.1371/journal.pone.0122025 PubMed DOI PMC

Yuan X. J., Li X. Z., Pan J. S., Wang G., Jiang S., Li X. H., et al. (2008). Genetic linkage map construction and location of QTLs for fruit-related traits in cucumber. Plant Breed. 127, 180–188. 10.1111/j.1439-0523.2007.01426.x DOI

Zhang Z., Hu M., Zhang J., Liu D., Zheng J., Zhang K., et al. (2009). Construction of a comprehensive PCR-based marker linkage map and QTL mapping for fiber quality traits in upland cotton (Gossypium hirsutum L.). Mol. Breed. 24, 49–61. 10.1007/s11032-009-9271-1 DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...