Cold tolerance is unaffected by oxygen availability despite changes in anaerobic metabolism
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
27619175
PubMed Central
PMC5020647
DOI
10.1038/srep32856
PII: srep32856
Knihovny.cz E-zdroje
- MeSH
- aklimatizace fyziologie MeSH
- aminokyseliny metabolismus MeSH
- anaerobióza fyziologie MeSH
- bazální metabolismus fyziologie MeSH
- homeostáza fyziologie MeSH
- kyslík metabolismus MeSH
- larva fyziologie MeSH
- metabolomika MeSH
- můry fyziologie MeSH
- nízká teplota MeSH
- reakce na chladový šok fyziologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- aminokyseliny MeSH
- kyslík MeSH
Insect cold tolerance depends on their ability to withstand or repair perturbations in cellular homeostasis caused by low temperature stress. Decreased oxygen availability (hypoxia) can interact with low temperature tolerance, often improving insect survival. One mechanism proposed for such responses is that whole-animal cold tolerance is set by a transition to anaerobic metabolism. Here, we provide a test of this hypothesis in an insect model system (Thaumatotibia leucotreta) by experimental manipulation of oxygen availability while measuring metabolic rate, critical thermal minimum (CTmin), supercooling point and changes in 43 metabolites in moth larvae at three key timepoints (before, during and after chill coma). Furthermore, we determined the critical oxygen partial pressure below which metabolic rate was suppressed (c. 4.5 kPa). Results showed that altering oxygen availability did not affect (non-lethal) CTmin nor (lethal) supercooling point. Metabolomic profiling revealed the upregulation of anaerobic metabolites and alterations in concentrations of citric acid cycle intermediates during and after chill coma exposure. Hypoxia exacerbated the anaerobic metabolite responses induced by low temperatures. These results suggest that cold tolerance of T. leucotreta larvae is not set by oxygen limitation, and that anaerobic metabolism in these larvae may contribute to their ability to survive in necrotic fruit.
Zobrazit více v PubMed
Chown S. L. & Nicolson S. W. Insect Physiological Ecology: mechanisms and patterns (Oxford University Press, 2004).
Harrison J. F., Woods H. A. & Roberts S. P. Ecological and Environmental Physiology of Insects (Oxford University Press, 2012).
Hoback W. W. & Stanley D. W. Insects in hypoxia. J. Insect Physiol. 47, 533–542 (2001). PubMed
Dillon M. E. & Frazier M. R. Drosophila melanogaster locomotion in cold thin air. J. Exp. Biol. 209, 364–371 (2006). PubMed
Holter P. & Spangenberg A. Oxygen uptake in coprophilous beetles (Aphodius, Geotrupes, Sphaeridium) at low oxygen and high carbon dioxide concentrations. Physiol. Entomol. 22, 339–343 (1997).
Callier V., Hand S. C., Campbell J. B., Biddulph T. & Harrison J. F. Developmental changes in hypoxic exposure and responses to anoxia in Drosophila melanogaster. J. Exp. Biol. 218, 2927–2934 (2015). PubMed
Terblanche J. S. In The Insects - Structure and Function (eds Simpson S. J. & Douglas A. E.) 588–618 (2012).
Hazell S. P. & Bale J. S. Low temperature thresholds: Are chill coma and CTmin synonymous? J. Insect Physiol. 57, 1085–1089 (2011). PubMed
MacMillan H. A. & Sinclair B. J. Mechanisms underlying insect chill-coma. J. Insect Physiol. 57, 12–20 (2011). PubMed
Goller B. Y. F. & Esch H. Comparative study of chill-coma temperatures and muscle potentials in insect flight muscles. J. Exp. Biol. 150, 221–231 (1990).
Pörtner H. O. Climate change and temperature-dependent biogeography: oxygen limitation of thermal tolerance in animals. Naturwissenschaften 88, 137–146 (2001). PubMed
Klok C. J., Sinclair B. J. & Chown S. L. Upper thermal tolerance and oxygen limitation in terrestrial arthropods. J. Exp. Biol. 207, 2361–2370 (2004). PubMed
Stevens M. M., Jackson S., Bester S. A., Terblanche J. S. & Chown S. L. Oxygen limitation and thermal tolerance in two terrestrial arthropod species. J. Exp. Biol. 213, 2209–2218 (2010). PubMed
Verberk W. C. E. P., Sommer U., Davidson R. L. & Viant M. R. Anaerobic metabolism at thermal extremes: a metabolomic test of the oxygen limitation hypothesis in an aquatic insect. Integr. Comp. Biol. 53, 609–619 (2013). PubMed PMC
Verberk W. C. E. P. et al. Does oxygen limit thermal tolerance in arthropods? A critical review of current evidence. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 192, 64–78 (2016). PubMed PMC
Boardman L. & Terblanche J. S. Oxygen safety margins set thermal limits in an insect model system. J. Exp. Biol. 218, 1677–1685 (2015). PubMed
Hetz S. K. & Bradley T. J. Insects breathe discontinuously to avoid oxygen toxicity. Nature 433, 516–519 (2005). PubMed
Terblanche J. S., Clusella-Trullas S. & Chown S. L. Phenotypic plasticity of gas exchange pattern and water loss in Scarabaeus spretus (Coleoptera: Scarabaeidae): deconstructing the basis for metabolic rate variation. J. Exp. Biol. 213, 2940–2949 (2010). PubMed
Williams C. M., Pelini S. L., Hellmann J. J. & Sinclair B. J. Intra-individual variation allows an explicit test of the hygric hypothesis for discontinuous gas exchange in insects. Biol. Lett. 6, 274–277 (2010). PubMed PMC
Huang S.-P., Talal S., Ayali A. & Gefen E. The effect of discontinuous gas exchange on respiratory water loss in grasshoppers (Orthoptera: Acrididae) varies across an aridity gradient. J. Exp. Biol. 218, 2510–2517 (2015). PubMed
Lee R. E., Chen C. P. & Denlinger D. L. A rapid cold-hardening process in insects. Science (80-) 238, 1415–1417 (1987). PubMed
Coulson S. J. & Bale J. S. Anoxia induces rapid cold hardening in the housefly Musca domestica (Diptera: Muscidae). J. Insect Physiol. 37, 497–501 (1991).
Yocum G. D. & Denlinger D. L. Anoxia blocks thermotolerance and the induction of rapid cold hardening in the flesh fly, Sarcophaga crassipalpis. Physiol. Biochem. Zool. 19, 152– 158 (1994).
Nilson T. L., Sinclair B. J. & Roberts S. P. The effects of carbon dioxide anesthesia and anoxia on rapid cold-hardening and chill coma recovery in Drosophila melanogaster. J. Insect Physiol. 52, 1027–1033 (2006). PubMed PMC
Storey K. B. & Storey J. M. In Advances in Low Temperature Biology (ed Steponkus P. L.) 101–140 (JAI Press, 1992).
Boardman L., Sorensen J. G., Johnson S. A. & Terblanche J. S. Interactions between controlled atmospheres and low temperature tolerance: a review of biochemical mechanisms. Front. Physiol. 2, 92 (2011). PubMed PMC
Boardman L., Sørensen J. G. & Terblanche J. S. Physiological and molecular mechanisms associated with cross tolerance between hypoxia and low temperature in Thaumatotibia leucotreta. J. Insect Physiol. 82, 75–84 (2015). PubMed
Michaud M. R. & Denlinger D. L. Shifts in the carbohydrate, polyol, and amino acid pools during rapid cold-hardening and diapause-associated cold-hardening in flesh flies (Sarcophaga crassipalpis): a metabolomic comparison. J. Comp. Physiol. B 177, 753–763 (2007). PubMed
Overgaard J. et al. Metabolomic profiling of rapid cold hardening and cold shock in Drosophila melanogaster. J. Insect Physiol. 53, 1218–1232 (2007). PubMed
Colinet H., Larvor V., Laparie M. & Renault D. Exploring the plastic response to cold acclimation through metabolomics. Funct. Ecol. 26, 711–722 (2012).
Williams C. M. et al. Cold adaptation shapes the robustness of metabolic networks in Drosophila melanogaster. Evolution (N. Y). 68, 3505–3523 (2014). PubMed PMC
MacMillan H. A., Williams C. M., Staples J. F. & Sinclair B. J. Reestablishment of ion homeostasis during chill-coma recovery in the cricket Gryllus pennsylvanicus. Proc. Natl. Acad. Sci. 109, 20750–20755 (2012). PubMed PMC
Robert Michaud M. et al. Metabolomics reveals unique and shared metabolic changes in response to heat shock, freezing and desiccation in the Antarctic midge, Belgica antarctica. J. Insect Physiol. 54, 645–655 (2008). PubMed
Lighton J. R. B. Hot hypoxic flies: Whole-organism interactions between hypoxic and thermal stressors in Drosophila melanogaster. J. Therm. Biol. 32, 134–143 (2007).
Verberk W. C. E. P. & Bilton D. T. Can oxygen set thermal limits in an insect and drive gigantism? Plos One 6, e22610 (2011). PubMed PMC
Boardman L., Grout T. G. & Terblanche J. S. False codling moth Thaumatotibia leucotreta (Lepidoptera, Tortricidae) larvae are chill-susceptible. Insect Sci. 19, 315–328 (2012).
Lighton J. R. B. & Turner R. J. Thermolimit respirometry: an objective assessment of critical thermal maxima in two sympatric desert harvester ants, Pogonomyrmex rugosus and P. californicus. J. Exp. Biol. 207, 1903–1913 (2004). PubMed
Basson C. H. & Terblanche J. S. Metabolic responses of Glossina pallidipes (Diptera: Glossinidae) puparia exposed to oxygen and temperature variation: Implications for population dynamics and subterranean life. J. Insect Physiol. 56, 1789–1797 (2010). PubMed
Boardman L., Sørensen J. G. & Terblanche J. S. Physiological responses to fluctuating thermal and hydration regimes in the chill susceptible insect, Thaumatotibia leucotreta. J. Insect Physiol. 59, 781–794 (2013). PubMed
Lighton J. R. B. & Lovegrove B. G. A temperature-induced switch from diffusive to convective ventilation in the honeybee. J. Exp. Biol. 154, 509–516 (1990).
Koštál V. et al. Long-Term cold acclimation extends survival time at 0°C and modifies the metabolomic profiles of the larvae of the fruit fly Drosophila melanogaster. Plos One 6, e25025 (2011). PubMed PMC
Hallman G. J. & Denlinger D. L. Temperature sensitivity in insects and application in integrated pest management. (Westview Press, Inc., 1998).
Fields P. G. & White N. D. G. Alternatives to methyl bromide treatmerts for stored-product and quarantine insect. Annu. Rev. Entomol. 47, 331–359 (2002). PubMed
Ben-Yehoshua S., Robertson R. N. & Biale J. B. Respiration & internal atmosphere of avocado fruit. Plant Physiol. 38, 194–201 (1962). PubMed PMC
Grové T., De Beer M. S. & Joubert P. H. Developing a systems approach for Thaumatotibia leucotreta (Lepidoptera: Tortricidae) on ‘Hass’ avocado in South Africa. J. Econ. Entomol. 103, 1112–1128 (2010). PubMed
Makarieva A. M., Gorshkov V. G., Li B.-L. & Chown S. L. Size- and temperature-independence of minimum life-supporting metabolic rates. Funct. Ecol. 20, 83–96 (2006).
Hochachka P. W. In Plant Life Under Oxygen Deprivation (eds Jackson M. B., Davies D. D. & Lambers H.) 121–128 (SPB Academic Publishing, 1991).
Yeager D. P. & Ultsch G. R. Physiological regulation and conformation: a BASIC program for the determination of critical points. Physiol. Zool. 62, 888–907 (1989).
Pörtner H. O. & Grieshaber, M K. In The vertebrate gas transport cascade: adaptations to environment and mode of life (ed. Bicudo J. E. P. W.) 330–357 (CRC Press, Boca Raton, Florida, 1993).
Greenlee K. J. & Harrison J. F. Respiratory changes throughout ontogeny in the tobacco hornworm caterpillar, Manduca sexta. J. Exp. Biol. 208, 1385–1392 (2005). PubMed
Zhou S., Criddle R. S. & Mitcham E. J. Metabolic response of Platynota stultana pupae during and after extended exposure to elevated CO2 and reduced O2 atmospheres. J. Insect Physiol. 47, 401–409 (2001). PubMed
Herreid C. F. Hypoxia in invertebrates. Comp. Biochem. Physiol. Part A Physiol. 67, 311–320 (1980).
Clusella-Trullas S. & Chown S. L. Investigating onychophoran gas exchange and water balance as a means to inform current controversies in arthropod physiology. J. Exp. Biol. 211, 3139–3146 (2008). PubMed
Marshall D. J., Bode M. & White C. R. Estimating physiological tolerances - a comparison of traditional approaches to nonlinear regression techniques. J. Exp. Biol. 216, 2176–2182 (2013). PubMed
Van Voorhies W. A. Metabolic function in Drosophila melanogaster in response to hypoxia and pure oxygen. J. Exp. Biol. 212, 3132–3141 (2009). PubMed PMC
Lease H. M., Klok C. J., Kaiser A. & Harrison J. F. Body size is not critical for critical PO2 in scarabaeid and tenebrionid beetles. J. Exp. Biol. 215, 2524–2533 (2012). PubMed
Harrison J. et al. Responses of terrestrial insects to hypoxia or hyperoxia. Respir. Physiol. Neurobiol. 154, 4–17 (2006). PubMed
Terblanche J. S., Marais E., Hetz S. K. & Chown S. L. Control of discontinuous gas exchange in Samia cynthia: effects of atmospheric oxygen, carbon dioxide and moisture. J. Exp. Biol. 211, 3272–3280 (2008). PubMed
Groenewald B., Chown S. L. & Terblanche J. S. A hierarchy of factors influence discontinuous gas exchange in the grasshopper Paracinema tricolor (Orthoptera: Acrididae). J. Exp. Biol. 217, 3407–3415 (2014). PubMed
Lee R. E., Costanzo J. P. & Mugnano J. A. Regulation of supercooling and ice nucleation in insects. Eur. J. Entomol. 93, 405–418 (1996).
MacMillan H. A. & Sinclair B. J. The role of the gut in insect chilling injury: cold-induced disruption of osmoregulation in the fall field cricket, Gryllus pennsylvanicus. J. Exp. Biol. 214, 726–734 (2011). PubMed
Malmendal A. et al. Metabolomic analysis of the selection response of Drosophila melanogaster to environmental stress: are there links to gene expression and phenotypic traits? Naturwissenschaften 100, 417–427 (2013). PubMed
Wade A. M. & Tucker H. N. Antioxidant characteristics of L-histidine. J. Nutr. Biochem. 9, 308–315 (1998).
Lemire J. et al. Histidine is a source of the antioxidant, alpha-ketoglutarate, in Pseudomonas fluorescens challenged by oxidative stress. Fems Microbiol. Lett. 309, 170–177 (2010). PubMed
Görlach A. In Hypoxia and cancer (ed. Melillo M.) 65–90 (Springer Science + Business Media B.V., 2014).
Overgaard J., Sørensen J. G., Petersen S. O., Loeschcke V. & Holmstrup M. Changes in membrane lipid composition following rapid cold hardening in Drosophila melanogaster. J. Insect Physiol. 51, 1173–1182 (2005). PubMed
Goto S. G., Udaka H., Ueda C. & Katagiri C. Fatty acids of membrane phospholipids in Drosophila melanogaster lines showing rapid and slow recovery from chill coma. Biochem. Biophys. Res. Commun. 391, 1251–1254 (2010). PubMed
Pujol-Lereis L. M., Fagali N. S., Rabossi A., Catalá Á. & Quesada-Allué L. A. Chill-coma recovery time, age and sex determine lipid profiles in Ceratitis capitata tissues. J. Insect Physiol. 87, 53–62 (2016). PubMed
Slotsbo S. et al. Tropical to subpolar gradient in phospholipid composition suggests adaptive tuning of biological membrane function in drosophilids. Funct. Ecol. 30, 759–768 (2016).
Vereshtchagin S. M., Sytinsky I. A. & Tyshchenko V. P. The effect of γ-aminobutyric acid and β-alanine on bioelectrical activity of nerve ganglia of the pine moth caterpillar (Dendrolimus pini). J. Insect Physiol. 6, 21–25 (1961).
Joanisse D. R. & Storey K. B. Oxidative stress and antioxidants in overwintering larvae of cold-hardy goldenrod gall insects. J. Exp. Biol. 199, 1483–1491 (1996). PubMed
Carpenter J., Bloem S. & Hofmeyr H. In Area-Wide Control of Insect Pests (eds Vreysen M., Robinson A. & Hendrichs J.) 351–359 (Springer Netherlands, 2007).
Sinclair B. J., Jaco Klok C., Scott M. B., Terblanche J. S. & Chown S. L. Diurnal variation in supercooling points of three species of Collembola from Cape Hallett, Antarctica. J. Insect Physiol. 49, 1049–1061 (2003). PubMed
Lighton J. R. B. & Schilman P. E. Oxygen reperfusion damage in an insect. Plos One 2, e1267 (2007). PubMed PMC
Benjamini Y. & Hochberg Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J. R. Stat. Soc. Ser. B 57, 289–300 (1995).
Xia J., Mandal R., Sinelnikov I. V., Broadhurst D. & Wishart D. S. MetaboAnalyst 2.0-a comprehensive server for metabolomic data analysis. Nucleic Acids Res. 40, W127–W133 (2012). PubMed PMC
Xia J., Sinelnikov I. V., Han B. & Wishart D. S. MetaboAnalyst 3.0—making metabolomics more meaningful. Nucleic Acids Res. 43, W251–W257 (2015). PubMed PMC
Colinet H., Larvor V., Bical R. & Renault D. Dietary sugars affect cold tolerance of Drosophila melanogaster. Metabolomics 9, 608–622 (2013).