Using Phenomic Analysis of Photosynthetic Function for Abiotic Stress Response Gene Discovery

. 2016 ; 14 () : e0185. [epub] 20160909

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid27695390

Monitoring the photosynthetic performance of plants is a major key to understanding how plants adapt to their growth conditions. Stress tolerance traits have a high genetic complexity as plants are constantly, and unavoidably, exposed to numerous stress factors, which limits their growth rates in the natural environment. Arabidopsis thaliana, with its broad genetic diversity and wide climatic range, has been shown to successfully adapt to stressful conditions to ensure the completion of its life cycle. As a result, A. thaliana has become a robust and renowned plant model system for studying natural variation and conducting gene discovery studies. Genome wide association studies (GWAS) in restructured populations combining natural and recombinant lines is a particularly effective way to identify the genetic basis of complex traits. As most abiotic stresses affect photosynthetic activity, chlorophyll fluorescence measurements are a potential phenotyping technique for monitoring plant performance under stress conditions. This review focuses on the use of chlorophyll fluorescence as a tool to study genetic variation underlying the stress tolerance responses to abiotic stress in A. thaliana.

Zobrazit více v PubMed

Anderson J.M. ( . 1986). Photoregulation of the composition, function, and structure of thylakoid membranes. Annu Rev Plant Physiol. 37: 93– 136.

Ashraf M., Harris P.J.C. ( . 2013). Review: Photosynthesis under stressful environments: An overview. Photosynthetica. 51( 2): 163– 190.

Atwell S., Huang Y. S., Vilhjálmsson B.J., Willems G., Horton M., Li Y., Meng D., Platt A., Tarone A. M., Hu T. T., Jiang R., Muliyati N.W., Zhang X., Amer M.A., Baxter I., Brachi B., Chory J., Dean C., Debieu M., Meaux J. de., Ecker J.R., Faure N., Kniskern J. M., Jones J.D.G., Michael T., Nemri A., Roux F., Sait D.E., Tang C., Todesco M., Traw M.B., Weigel D., Marjoram P., Borevitz J.O., Bergelson J., and Nordborg M. ( . 2011). Genome-wide association study of 107 phenotypes in a common set of Arabidopsis thaliana inbred lines. Nature. 465( 7298): 627– 631. PubMed PMC

Baker N.R. ( . 2008). Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annual review of Plant Biology. 59: 89– 113. PubMed

Barbagallo R.P., Oxborough K., Pallett K.E., and Baker N.R. ( . 2003). Rapid noninvasive screening for perturbations of metabolism and plant growth using chlorophyll fluorescence imaging. Plant physiol. 132: 485– 493. PubMed PMC

Björkman O. ( . 1981). Responses to different quantum flux densities. Encyclopedia of Plant Physiology, New Series, Lange O. L., Nobel P. S., Osmond C. B., and Zeigler H., eds., . Springer, Berlin, Vol. 12A: 57– 107.

Borevitz J.O., Maloof J.N., Lutes J., Dabi T., Redfern J.L., Trainer G.T., Werner J.D., Asami T., Berry C.C., Weigel D., and Chory J. ( . 2002). Quantitative trait loci controlling light and hormone response in two accessions of Arabidopsis thaliana. Genetics. 160( 2): 683– 96. PubMed PMC

Bouchabke O., Chang F., Simon M., Voisin R., Pelletier G., and Durand-Tardif M. ( . 2008). Natural variation in Arabidopsis thaliana as a tool for highlighting differential drought responses. PLoS one. 3( 2): e1705. PubMed PMC

Brown T.B., Cheng R., Sirault X.R., Rungrat T., Murray K.D., Trtilek M., Furbank R.T., Badger M., Pogson B.J., and Borevitz J.O. ( . 2014). TraitCapture: genomic and environment modelling of plant phenomic data. Curr Opin Plant Biol. 18: 73– 79. PubMed

Bunce J.A. ( . 2008). Acclimation of photosynthesis to temperature in Arabidopsis thaliana and Brassica oleracea. Photosynthetica. 46 ( 4): 517– 524.

Busoms S., Teres J., Huang X-Y, Bomblies K., Danku J., Douglas A., Weigel D., Poschenrieder C., and Salt D.E. ( . 2015). Salinity is an agent of divergent selection driving local adaptation of Arabidopsis to coastal habitats. Plant Physiology. 168( 3): 915– 929. PubMed PMC

Butler W.L. ( . 1978). Energy distribution in the photochemical apparatus of photosynthesis and photo protection in mangroves under field conditions. Plant Cell Environ. 20: 579– 588.

Cao J., Schneeberger K., Ossowski S., Günther T., Bender S., Fitz J., Koenig D., Lanz C., Stegle O., Lippert C, Wang X., Ott F., Müller J., Alonso-Blanco C., Borgwardt K., Schmid K.J., and Weigel D. ( . 2011). Whole-genome sequencing of multiple Arabidopsis thaliana populations. Nature Genetic. 43( 10): 956– 965. PubMed

Cazzaniga S., Osto L.D., Kong S.G., Wada M., and Bassi R. ( . 2013). Interaction between avoidance of photon absorption, excess energy dissipation and zeaxanthin synthesis against photooxidative stress in Arabidopsis. The plant journal, doi:10.1111/tpj.12314. PubMed

Chaves M. M., Flexas J. and Pinheiro C. ( . 2009). Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann Bot. 103( 4): 551– 560. PubMed PMC

Cheng R., Borevitz J., and Doerge R.W. ( . 2013). Selecting informative traits for multivariate quantitative trait locus mapping helps to gain optimal power. Genetics 195( 3): 683– 691. PubMed PMC

Chen D., Neumann K., Friedel S., Kilian B., Chen M., Altmann T., and Klukas C. ( . 2014). Dissecting the phenotypic components of crop plant growth and drought responses based on high-throughput image analysis. Plant Cell. 26: 4636– 4655. PubMed PMC

Cruz J., Savage L.J., Zegarac R., Hall C.C., Satoh-Cruz M., Davis G.A., Kovac W.K., Chen J., and Kramer D.M. ( . 2016). Dynamic environment photosynthetic imaging reveals emergent phenotypes. Cell Systems. 2: 365– 377. PubMed

Feller U., Craft-Brandner S.J., Salvucci M.E. ( . 1998). Moderately high temperatures inhibit ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) activase-mediated activation of Rubisco. Plant Physiology. 116: 539– 546. PubMed PMC

García-Plazaola J.I., Esteban R., Fernández-Marín B., Kranner I., Porcar-Castell A. ( . 2012). Thermal energy dissipation and xanthophyll cycles beyond the Arabidopsis model. Photosynth Res. 113: 89– 103. PubMed

Govindjee. ( 1995). Sixty-three years since Kautsky: chlorophyll a fluorescence. Australian Journal of Plant Physiology. 22: 131– 160.

Hairmansis A., Berger B., Tester M., and Roy S.J. ( . 2014). Image-based phenotyping for non-destructive screening of different salinity tolerance traits in rice. The Rice Journal. 7: 16. PubMed PMC

Heckathorn S.A., Downs C.A., Sharkey T.D., and Coleman J.S. ( . 1998). The small methionine-rich chloroplast heat-shock protein protects photosystem II electron transport during heat stress. Plant Physiology. 116: 439– 444. PubMed PMC

Heffernan O. ( . 2013). The dry facts. Nature. 501: S2– S3. PubMed

Hogewoning S.W., Wientjes E., Douwstra P., Trouwborst G., leperen W.V., Croce R., and Harbinson J. ( . 2012). Photosynthetic Quantum Yield Dynamics: From Photosystems to Leaves. The plant cell. 24( 5): 1921– 1935. PubMed PMC

Horton P., Ruban A.V., and Walters R.G. ( . 1996). Annu. Rev. Plant Physiol. Plant Mol. Biol. 47: 655– 684. PubMed

Huang X. and Han B. ( . 2014). Natural variation and Genome-Wide Association Studies in crop plants. Annu. Rev. Plant Biol. 65: 531 – 551. PubMed

Huang X., Wei X., Sang T., Zhao Q., Feng Q., Zhao Y., Li C., Zhu C., Lu T., Zhang Z., Li M., Fan D., Guo Y., Wang A., Wang L., Deng L., Li W., Lu Y., Weng Q., Liu K., Huang T., Zhou T., Jing Y., W Li., Lin Z., Buckler E.S., Qian Q., Zhang Q.F., J Li., and Han B. ( . 2010). Genome-wide association studies of 14 agronomic traits in rice landraces. Nature Genetics. 42( 11): 961– 967. PubMed

Huang X., Zhao Y., Wei X., Li C., Wang A., Zhao Q., Li W., Guo Y., Deng L., Zhu C., Fan D., Lu Y., Weng Q., Liu K., Zhou T., Jing Y., Si L., Dong G., Huang T., Lu T., Feng Q., Qian Q., Li J., and Han B. ( . 2012). Genome-wide association studies of flowering time and grain yield traits in a worldwide collection of rice germplasm. Nature Genetics. 44( 1): 32– 39. PubMed

Ihnken S., Kromkamp J.C., and Beardall J. ( . 2011). Photoacclimation in Dunaliella tertiolecta reveals a unique NPQ pattern upon exposure to irradiance. Photosynthesis research. 110 ( 2): 123– 37. PubMed PMC

Ikeuchi M., Uebayashi N., Sato F., and Endo T. ( . 2016). Physiological Functions of PsbS-dependent and PsbS-independent NPQ under Naturally Fluctuating Light Conditions. Plant Cell Physiol. 55( 7): 1286– 1295. PubMed

Iyengar E. R. R. and Reddy M. P. ( . 1996). Photosynthesis in highly salt-tolerant plants. Handbook of photosynthesis. M. Pessaraki; New York, Marcel Dekker: 897– 909.

James R. A., Rivelli A. R., Munns R. and von Caemmerer S. ( . 2002). Factors affecting CO2 assimilation, leaf injury and growth in salt-stressed durum wheat. Functional Plant Biology. 29( 12): 1393– 1403. PubMed

James R. A., Munns R., Von Caemmerer S., Trejo C., Miller C. and Condon T. ( . 2006). Photosynthetic capacity is related to the cellular and subcellular partitioning of Na+, K+ and Cl- in salt-affected barley and durum wheat. Plant Cell and Environment. 29( 12): 2185– 2197. PubMed

Jung H.-s. and Niyogi K.K. ( . 2009). Quantitative Genetic Analysis of Thermal Dissipation in Arabidopsis. Plant physiology. 150: 977– 986. PubMed PMC

Kadota A., Yamada N., Suetsugu N., Hirose M., Satio C., Shoda K., Ichikawa S., Kagawa T., Nakano A., and Wada M. ( . 2009). Short actin-base mechanism for light-directed chloroplast movement in Arabidopsis. PNAS. 106( 31): 13106– 13111. PubMed PMC

Kagawa T., and Wada M. ( . 2002). Blue light-induced chloroplast relocation. Plant Cell Physio. 43( 4): 367– 371. PubMed

Karp G. ( . 2009). Cell and Molecular Biology: Concepts and Experiments. 6th ed JohnWiley and Sons Limited.

Kasahara M., Kagawa T., Oikawa K., Suetsugu N., Miyao M., and Wada M. ( . 2002). Chloroplast avoidance movement reduces photo-damage in plants. Nature. 420: 829– 832. PubMed

Kautsky H., Apel W., and Amann H. ( . 1960). Chlorophyll fluoreszenz und Kohlensäureassimilation. XIII. Die Floureszenkurve und die Photo-chemie der Pflanze. Biochem. Zeit. 322: 277– 292.

Keurentjes J.J.B., and Sulpice R. ( . 2009). The role of natural variation in dissecting genetic regulation of primary metabolism. Plant Signaling & Behavior. 4( 3): 244– 246. PubMed PMC

Koornneef M., Alonso-Blanco C., and Vreugdenhil D. ( . 2004). Naturally occurring genetic variation in Arabidopsis thaliana. Annu. Rev. Plant Biol. 55: 141– 172. PubMed

Korte A. and Farlow A. ( . 2013). The advantages and limitations of trait analysis with GWAS: a review. Plant Methods. 9: 29. PubMed PMC

Lefebvre V., Kiani S.P., and Durand-Tardif M. ( . 2009). A focus on natural variation for abiotic constraints response in the model species Arabidopsis thaliana. Int. J. Mol. Sci. 10: 3547– 3582. PubMed PMC

Loudet O., Chaillou S., Camilleri C., Bouchez D. and Daniel-Vedele F. ( . 2002) Bay-0 x Shahdara recombinant inbred line population: a powerful tool for the genetic dissection of complex traits in Arabidopsis. Theor Appl Genet. 104( 6–7): 1173– 1184. PubMed

Li X-p., Björkman O., Shih C., Grossman A.R., Rosenquist M., Jansson S., and Niyogi K.K. ( . 2000). A pigment-binding protein essential for regulation of photosynthetic light harvesting. Nature. 403( 6778): 391– 395. PubMed

Li X-p., Müller-M P., Gilmore A.M., and Niyogi K.K. ( . 2002). PsbS-dependent enhancement of feedback de-excitation protects photosystem II from photoinhobition. PNAS. 99( 23): 15222– 15227. PubMed PMC

Li Y., Cheng R., Spokas K.A., Palmer A.A., and Borevitz J.O. ( . 2014). Genetic variation for life history sensitivity to seasonal warming in Arabidopsis thaliana. Genetics. 196( 2): 569– 577. PubMed PMC

Lynch M., and Walsh B. ( . 1998). Genetics and analysis of quantitative traits. Sunderland, MA: Sinauer Associates, Inc.

Maxwell K., and Johnson G. N. ( . 2000). Chlorophyll fluorescence: A practical guide. Journal of experimental botany. 51( 345): 659– 68. PubMed

Mullen J.L., Weinig C. and Hangarter R.P. ( . 2006). Shade avoidance and the regulation of leaf inclination in Arabidopsis. Plant Cell and Environment. 29: 1099– 1106. PubMed

Müller P., Li X.P., and Niyogi K.K. ( . 2001). Non-photochemical quenching. A response to excess light energy. Plant Physiology. 125: 1558– 1566. PubMed PMC

Munns R., and Tester M. ( . 2008). Mechanisms of salinity tolerance. Annu Rev Plant Biol. 59: 651– 681. PubMed

Munekage Y., Hojo M., Meurer J., Endo T., Tasaka M., and Shikanai T. ( . 2002). PGR5 is involved in cyclic electron flow around photosystem I and Is essential for photoprotection in Arabidopsis. Cell. 110: 361– 371. PubMed

Muranaka S., Shimizu K., and Kato M. ( . 2002). A salt-tolerant cultivar of wheat maintains photosynthetic activity by suppressing sodium uptake. Photosynthetica. 40: 509– 515.

Murchie E.H., and Lawson T. ( . 2013). Review Paper: Chlorophyll fluorescence analysis:a guide to good practice and understanding some new applications. Journal of Experimental Botany. 64( 13): 3983– 3998. PubMed

Mustilli A.-C., Merlot S., Vavasseur A., Fenzi F., and Giraudat J. ( . 2002). Arabidopsis OST1 protein kinase mediates the regulation of stomatal aperture by abscisic acid and acts upstream of reactive oxygen species production. The Plant Cell. 14( 12): 3089– 3099. PubMed PMC

Niyogi K.K., Grossman A.R., and Björkman O. ( . 1998). Arabidopsis Mutants Define a Central Role for the Xanthophyll Cycle in the Regulation of Photosynthetic Energy Conversion. The plant cell. 10: 1121– 1134. PubMed PMC

Niyogi K.K. ( . 1999). Photoprotection revisited: Genetic and Molecular Approaches. Annual review of plant physiology and plant molecular biology. 50: 333– 359. PubMed

Osmond CB. ( . 1994). What is photoinhibition? Some insights from comparisons of sun and shade plants. : Baker NR, Bowyer JR, eds. . Photoinhibition of photosynthesis: from molecular mechanisms to the field. Oxford: Bios Scientific Publishers; 1– 24.

Peterhansel C., Horst I., Niessen M., Blume C., Kebeish R., Kurkcuoglu S., and Kreuzaler F. ( . 2010). Photorespiration. The Arabidopsis Book. 8: e0130 PubMed PMC

Qadir M., Quillérou E., Nangia V., Murtaza G., Singh M., Thomas R. J., Drechsel P. and Noble A. D. ( . 2014). Economics of salt-induced land degradation and restoration. Natural Resources Forum. 38: 282– 295.

Roháček K. ( . 2002). Fluorescence parameters: the definitions, photosynthetic meaning, and mutual relationships. Photosynthetica. 40( 1): 13– 29.

Rooijen R.V., Aarts M.G.M., and Herbinson J. ( . 2015). Natural genetic variation for acclimation of photosynthetic light use efficiency to growth irradiance in Arabidopsis. Plant Physiology. 167( 4): 1412– 1429. PubMed PMC

Roy S. J., Huang W., . Wang X.J., Evrard A., Schmockel S.M., Zafar Z.U., and Tester M. ( . 2013). A novel protein kinase involved in Na(+) exclusion revealed from positional cloning. Plant Cell Environ. 36( 3): 553– 568. PubMed

Sharkey T.D. and Zhang R. ( . 2010). High temperature effects on electron and photon circuits of photosynthesis. Journal of Integrative Plant Biology. 52( 8): 712– 722. PubMed

Shindo C., Bernasconi G., and Hardtke C.S. ( . 2007). Natural genetic variation in Arabidopsis: Tools, Traits and Prospects for Evolutionary Ecology. Annals of Botany. 99: 1043– 1054. PubMed PMC

Stemke J.A., and Santiago L.S. ( . 2011) Consequences of light absorptance in calculating electron transport rate of desert and succulent plants. Photosynthetica. 49: 195– 200.

Stepien P., and Johnson G.N. ( . 2009). Contrasting Responses of Photosynthesis to Salt Stress in the Glycophyte Arabidopsis and the Halophyte; The llungiella: Role of the Plastid Terminal Oxidase as an Alternative Electron Sink1. Plant physiology. 149: 1154– 1165. PubMed PMC

Takahashi S., and Badger M.R. ( . 2011). Photo protection in plants: a new light on photosystem II damage. Trends in plant science. 16( 1): 53– 60. PubMed

Teixeira E.I., Fischer G., van Velthuizen H., Walter C., and Ewert F. ( . 2013). Global hot-spots of heat stress on agricultural crops due to climate change. Agricultural and Forest Meteorology. 170: 206– 215.

Trontin C., Tisne S., Bach L., and Loudet O. ( . 2011). What does Arabidopsis natural variation teach us (and does not teach us) about adaptation in plants? Current opinion in plant biology. 14( 3): 225– 31. PubMed

Tsugane K., Kobayashi K., Niwa Y., Ohba Y., Wada K., and Kobayashi H. ( . 1999). A Recessive Arabidopsis Mutant That Grows Photoautotrophically under Salt Stress Shows Enhanced Active Oxygen Detoxification. Plant cell. 11: 1195– 1206. PubMed PMC

Turan S. ( . 2012). Light Acclimation in Plants: Photoinhibition and Photoprotection. Advances in bioresearch. 3 ( 1): 90– 94.

Vallejo A.J., Yanovsky M.J. and Botto J.F. ( . 2010). Germination variation in Arabidopsis thaliana accessions under moderate osmotic and salt stresses. Ann Bot. 106( 5): 833– 842. PubMed PMC

Ware M.A., Belgio E., and Ruban A.V. ( . 2015). Comparison of the protective effectiveness of NPQ in Arabidopsis plants deficient in PsbS protein and zeaxanthin. Journal of Experimental Botany. 66( 5): 1259– 1270. PubMed PMC

Weigel D. ( . 2012). Founders Review: Natural variation in Arabidopsis thaliana: from molecular genetics to ecological genomic. Plant physiology. 158: 2– 22. PubMed PMC

Woo N. S., Badger M.R., and Pogson B.J. ( . 2008). A rapid, non-invasive procedure for quantitative assessment of drought survival using chlorophyll fluorescence. Plant Methods. 4: 27 PubMed PMC

Yadav S., Irfan M., Ahmad A., and Hayat S. ( . 2011). Causes of salinity and plant manifestations to salt stress. J Environ Biol. 32: 667– 685. PubMed

Zhang R. and Sharkey T.D. ( . 2009). Photosynthetic electron transport and proton flux under moderate heat stress. Photosynth. Res. 100: 29– 43. PubMed

1001 Genome Consortium. ( 2016). 1,135 Genome Reveal the Global Pattern of Polymorphism in Arabidopsis thaliana. Cell. 166: 1– 11. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...