Exosome-driven transfer of tumor-associated Pioneer Translation Products (TA-PTPs) for the MHC class I cross-presentation pathway

. 2016 ; 5 (9) : e1198865. [epub] 20160621

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid27757298

Cellular immune reactions against non-self-epitopes require activation of cytotoxic CD8+ T-cells via cross-presentation of MHC class I-restricted peptides by professional antigen presenting cells (pAPCs), with the consequent detection and elimination of cells expressing the same antigens via the endogenous (direct) pathway. The source of peptides for the endogenous pathway is constituted of alternative mRNA translation products; however, it is still unclear which source of peptides is used for cross-presentation. Furthermore, the presentation of non-canonical translation products, produced during a non-conventional translation event, on class I molecules of tumor cells has been reported but how these peptides are generated, presented to pAPCs, and their capacity to stimulate CD8+ T cells is still not known. Here, we report that pioneer translation peptides (PTPs) derived from intron or exon pre-mRNAs can serve as tumor-associated antigens (TA-PTPs) and are delivered from the producing tumor cells to pAPCs via exosomes where they are processed by the cytosolic pathway. Injection of TA-PTPs and tumor-derived exosomes efficiently induce CD8+ T-cell proliferation and prevent tumor growth in mice. Our results show that TA-PTPs represent an efficient source of antigenic peptides for CD8+ T cell activation and that full-length proteins are not required for cross-presentation. These findings can have interesting implications for generating tolerance and for designing vectors to generate vaccines.

Zobrazit více v PubMed

Vyas JM, Van der Veen AG, Ploegh HL. The known unknowns of antigen processing and presentation. Nat Rev Immunol 2008; 8:607-18; PMID:18641646; http://dx.doi.org/ 10.1038/nri2368 PubMed DOI PMC

Jung S, Unutmaz D, Wong P, Sano G, De los Santos K, Sparwasser T, Wu S, Vuthoori S, Ko K, Zavala F et al.. In vivo depletion of CD11c+ dendritic cells abrogates priming of CD8+ T cells by exogenous cell-associated antigens. Immunity 2002; 17:211-20; PMID:12196292; http://dx.doi.org/ 10.1016/S1074-7613(02)00365-5 PubMed DOI PMC

Ackerman AL, Cresswell P. Cellular mechanisms governing cross-presentation of exogenous antigens. Nat Immunol 2004; 5:678-84; PMID:15224093; http://dx.doi.org/ 10.1038/ni1082 PubMed DOI

Lopez-Medina M, Perez-Lopez A, Alpuche-Aranda C, Ortiz-Navarrete V. Salmonella modulates B cell biology to evade CD8(+) T cell-mediated immune responses. Frontiers Immunol 2014; 5:586; PMID:25484884; http://dx.doi.org/22790179 10.3389/fimmu.2014.00586 PubMed DOI PMC

Joffre OP, Segura E, Savina A, Amigorena S. Cross-presentation by dendritic cells. Nat Rev Immunol 2012; 12:557-69; PMID:22790179; http://dx.doi.org/ 10.1038/nri3254 PubMed DOI

Guermonprez P, Amigorena S. Pathways for antigen cross presentation. Springer Semin Immunopathol 2005; 26:257-71; PMID:15592842; http://dx.doi.org/ 10.1007/s00281-004-0176-0 PubMed DOI

Guermonprez P, Saveanu L, Kleijmeer M, Davoust J, Van Endert P, Amigorena S. ER-phagosome fusion defines an MHC class I cross-presentation compartment in dendritic cells. Nature 2003; 425:397-402; PMID:14508489; http://dx.doi.org/ 10.1038/nature01911 PubMed DOI

Zinkernagel RM. On the role of dendritic cells versus other cells in inducing protective CD8+ T cell responses. Frontiers Immunol 2014; 5:30; PMID:24575091; http://dx.doi.org/26107264 10.3389/fimmu.2014.00030 PubMed DOI PMC

Sei JJ, Haskett S, Kaminsky LW, Lin E, Truckenmiller ME, Bellone CJ, Buller RM, Norbury CC. Peptide-MHC-I from endogenous antigen outnumber those from exogenous antigen, irrespective of APC phenotype or activation. PLoS Pathogens 2015; 11:e1004941; PMID:26107264; http://dx.doi.org/ 10.1371/journal.ppat.1004941 PubMed DOI PMC

Aspord C, Leloup C, Reche S, Plumas J. pDCs efficiently process synthetic long peptides to induce functional virus- and tumour-specific T-cell responses. Eur J Immunol 2014; 44:2880-92; PMID:25043392; http://dx.doi.org/ 10.1002/eji.201444588 PubMed DOI

Menager J, Ebstein F, Oger R, Hulin P, Nedellec S, Duverger E, Lehmann A, Kloetzel PM, Jotereau F, Guilloux Y. Cross-presentation of synthetic long peptides by human dendritic cells: a process dependent on ERAD component p97/VCP but Not sec61 and/or Derlin-1. PloS One 2014; 9:e89897; PMID:24587108; http://dx.doi.org/ 10.1371/journal.pone.0089897 PubMed DOI PMC

Rosalia RA, Quakkelaar ED, Redeker A, Khan S, Camps M, Drijfhout JW, Silva AL, Jiskoot W, van Hall T, van Veelen PA et al.. Dendritic cells process synthetic long peptides better than whole protein, improving antigen presentation and T-cell activation. Eur J Immunol 2013; 43:2554-65; PMID:23836147; http://dx.doi.org/ 10.1002/eji.201343324 PubMed DOI

Apcher S, Millot G, Daskalogianni C, Scherl A, Manoury B, Fahraeus R. Translation of pre-spliced RNAs in the nuclear compartment generates peptides for the MHC class I pathway. Proc Natl Acad Sci U S A 2013; 110:17951-6; PMID:24082107; http://dx.doi.org/ 10.1073/pnas.1309956110 PubMed DOI PMC

Coulie PG, Lehmann F, Lethe B, Herman J, Lurquin C, Andrawiss M, Boon T. A mutated intron sequence codes for an antigenic peptide recognized by cytolytic T lymphocytes on a human melanoma. Proc Natl Acad Sci U S A 1995; 92:7976-80; PMID:7644523; http://dx.doi.org/ 10.1073/pnas.92.17.7976 PubMed DOI PMC

Guilloux Y, Lucas S, Brichard VG, Van Pel A, Viret C, De Plaen E, Brasseur F, Lethe B, Jotereau F, Boon T. A peptide recognized by human cytolytic T lymphocytes on HLA-A2 melanomas is encoded by an intron sequence of the N-acetylglucosaminyltransferase V gene. J Exp Med 1996; 183:1173-83; PMID:8642259; http://dx.doi.org/ 10.1084/jem.183.3.1173 PubMed DOI PMC

Yewdell JW, Anton LC, Bennink JR. Defective ribosomal products (DRiPs): a major source of antigenic peptides for MHC class I molecules? J Immunol 1996; 157:1823-6; PMID:8757297 PubMed

Apcher S, Daskalogianni C, Lejeune F, Manoury B, Imhoos G, Heslop L, Fahraeus R. Major source of antigenic peptides for the MHC class I pathway is produced during the pioneer round of mRNA translation. Proc Natl Acad Sci U S A 2011; 108:11572-7; PMID:21709220; http://dx.doi.org/ 10.1073/pnas.1104104108 PubMed DOI PMC

Apcher S, Manoury B, Fahraeus R. The role of mRNA translation in direct MHC class I antigen presentation. Curr Opin Immunol 2012; 24:71-6; PMID:22341517; http://dx.doi.org/ 10.1016/j.coi.2012.01.007 PubMed DOI

Shastri N, Gonzalez F. Endogenous generation and presentation of the ovalbumin peptide/Kb complex to T cells. J Immunol 1993; 150:2724-36; PMID:8454852 PubMed

Heit A, Huster KM, Schmitz F, Schiemann M, Busch DH, Wagner H. CpG-DNA aided cross-priming by cross-presenting B cells. J Immunol 2004; 172:1501-7; PMID:14734727; http://dx.doi.org/ 10.4049/jimmunol.172.3.1501 PubMed DOI

Marino E, Tan B, Binge L, Mackay CR, Grey ST. B-cell cross-presentation of autologous antigen precipitates diabetes. Diabetes 2012; 61:2893-905; PMID:22829452; http://dx.doi.org/ 10.2337/db12-0006 PubMed DOI PMC

Testa JS, Apcher GS, Comber JD, Eisenlohr LC. Exosome-driven antigen transfer for MHC class II presentation facilitated by the receptor binding activity of influenza hemagglutinin. J Immunol 2010; 185:6608-16; PMID:21048109; http://dx.doi.org/ 10.4049/jimmunol.1001768 PubMed DOI PMC

Huseby ES, Sather B, Huseby PG, Goverman J. Age-dependent T cell tolerance and autoimmunity to myelin basic protein. Immunity 2001; 14:471-81; PMID:11336692; http://dx.doi.org/ 10.1016/S1074-7613(01)00127-3 PubMed DOI

Ahn K, Gruhler A, Galocha B, Jones TR, Wiertz EJ, Ploegh HL, Peterson PA, Yang Y, Fruh K. The ER-luminal domain of the HCMV glycoprotein US6 inhibits peptide translocation by TAP. Immunity 1997; 6:613-21; PMID:9175839; http://dx.doi.org/ 10.1016/S1074-7613(00)80349-0 PubMed DOI

Ahn K, Meyer TH, Uebel S, Sempe P, Djaballah H, Yang Y, Peterson PA, Fruh K, Tampe R. Molecular mechanism and species specificity of TAP inhibition by herpes simplex virus ICP47. EMBO J 1996; 15:3247-55; PMID:8670825 PubMed PMC

Fruh K, Ahn K, Djaballah H, Sempe P, van Endert PM, Tampe R, Peterson PA, Yang Y. A viral inhibitor of peptide transporters for antigen presentation. Nature 1995; 375:415-8; PMID:7760936; http://dx.doi.org/ 10.1038/375415a0 PubMed DOI

Lehner PJ, Karttunen JT, Wilkinson GW, Cresswell P. The human cytomegalovirus US6 glycoprotein inhibits transporter associated with antigen processing-dependent peptide translocation. Proc Natl Acad Sci U S A 1997; 94:6904-9; PMID:9192664; http://dx.doi.org/ 10.1073/pnas.94.13.6904 PubMed DOI PMC

Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ, Lotvall JO. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 2007; 9:654-9; PMID:17486113; http://dx.doi.org/ 10.1038/ncb1596 PubMed DOI

Zitvogel L, Regnault A, Lozier A, Wolfers J, Flament C, Tenza D, Ricciardi-Castagnoli P, Raposo G, Amigorena S. Eradication of established murine tumors using a novel cell-free vaccine: dendritic cell-derived exosomes. Nat Med 1998; 4:594-600; PMID:9585234; http://dx.doi.org/ 10.1038/nm0598-594 PubMed DOI

Wolfers J, Lozier A, Raposo G, Regnault A, Thery C, Masurier C, Flament C, Pouzieux S, Faure F, Tursz T et al.. Tumor-derived exosomes are a source of shared tumor rejection antigens for CTL cross-priming. Nat Med 2001; 7:297-303; PMID:11231627; http://dx.doi.org/ 10.1038/85438 PubMed DOI

Jenjaroenpun P, Kremenska Y, Nair VM, Kremenskoy M, Joseph B, Kurochkin IV. Characterization of RNA in exosomes secreted by human breast cancer cell lines using next-generation sequencing. Peer J 2013; 1:e201; PMID:24255815; http://dx.doi.org/ 10.7717/peerj.201 PubMed DOI PMC

Yewdell JW. DRiPs solidify: progress in understanding endogenous MHC class I antigen processing. Trends Immunol 2011; 32:548-58; PMID:21962745; http://dx.doi.org/ 10.1016/j.it.2011.08.001 PubMed DOI PMC

Bourdetsky D, Schmelzer CE, Admon A. The nature and extent of contributions by defective ribosome products to the HLA peptidome. Proc Natl Acad Sci U S A 2014; 111:E1591-9; PMID:24715725; http://dx.doi.org/ 10.1073/pnas.1321902111 PubMed DOI PMC

Hirohashi Y, Torigoe T, Maeda A, Nabeta Y, Kamiguchi K, Sato T, Yoda J, Ikeda H, Hirata K, Yamanaka N et al.. An HLA-A24-restricted cytotoxic T lymphocyte epitope of a tumor-associated protein, survivin. Clin Cancer Res 2002; 8:1731-9; PMID:12060610 PubMed

Probst-Kepper M, Stroobant V, Kridel R, Gaugler B, Landry C, Brasseur F, Cosyns JP, Weynand B, Boon T, Van Den Eynde BJ. An alternative open reading frame of the human macrophage colony-stimulating factor gene is independently translated and codes for an antigenic peptide of 14 amino acids recognized by tumor-infiltrating CD8 T lymphocytes. J Exp Med 2001; 193:1189-98; PMID:11369790; http://dx.doi.org/ 10.1084/jem.193.10.1189 PubMed DOI PMC

Saulquin X, Scotet E, Trautmann L, Peyrat MA, Halary F, Bonneville M, Houssaint E. +1 Frameshifting as a novel mechanism to generate a cryptic cytotoxic T lymphocyte epitope derived from human interleukin 10. J Exp Med 2002; 195:353-8; PMID:11828010; http://dx.doi.org/ 10.1084/jem.20011399 PubMed DOI PMC

Wang RF, Parkhurst MR, Kawakami Y, Robbins PF, Rosenberg SA. Utilization of an alternative open reading frame of a normal gene in generating a novel human cancer antigen. J Exp Med 1996; 183:1131-40; PMID:8642255; http://dx.doi.org/ 10.1084/jem.183.3.1131 PubMed DOI PMC

Moreau-Aubry A, Le Guiner S, Labarriere N, Gesnel MC, Jotereau F, Breathnach R. A processed pseudogene codes for a new antigen recognized by a CD8(+) T cell clone on melanoma. J Exp Med 2000; 191:1617-24; PMID:10790436; http://dx.doi.org/ 10.1084/jem.191.9.1617 PubMed DOI PMC

Basta S, Stoessel R, Basler M, van den Broek M, Groettrup M. Cross-presentation of the long-lived lymphocytic choriomeningitis virus nucleoprotein does not require neosynthesis and is enhanced via heat shock proteins. J Immunol 2005; 175:796-805; PMID:16002676; http://dx.doi.org/ 10.4049/jimmunol.175.2.796 PubMed DOI

Kovacsovics-Bankowski M, Rock KL. A phagosome-to-cytosol pathway for exogenous antigens presented on MHC class I molecules. Science 1995; 267:243-6; PMID:7809629; http://dx.doi.org/ 10.1126/science.7809629 PubMed DOI

Shen L, Sigal LJ, Boes M, Rock KL. Important role of cathepsin S in generating peptides for TAP-independent MHC class I crosspresentation in vivo. Immunity 2004; 21:155-65; PMID:15308097; http://dx.doi.org/ 10.1016/j.immuni.2004.07.004 PubMed DOI

Segura E, Durand M, Amigorena S. Similar antigen cross-presentation capacity and phagocytic functions in all freshly isolated human lymphoid organ-resident dendritic cells. J Exp Med 2013; 210:1035-47; PMID:23569327; http://dx.doi.org/ 10.1084/jem.20121103 PubMed DOI PMC

Schwanhausser B, Busse D, Li N, Dittmar G, Schuchhardt J, Wolf J, Chen W, Selbach M. Global quantification of mammalian gene expression control. Nature 2011; 473:337-42; PMID:21593866; http://dx.doi.org/ 10.1038/nature10098 PubMed DOI

Yamada A, Sasada T, Noguchi M, Itoh K. Next-generation peptide vaccines for advanced cancer. Cancer Sci 2013; 104:15-21; PMID:23107418; http://dx.doi.org/ 10.1111/cas.12050 PubMed DOI PMC

Pol J, Bloy N, Buque A, Eggermont A, Cremer I, Sautes-Fridman C, Galon J, Tartour E, Zitvogel L, Kroemer G et al.. Trial Watch: Peptide-based anticancer vaccines. Onco Immunol 2015; 4:e974411; PMID:26137405; http://dx.doi.org/:18228490 10.4161/2162402X.2014.974411 PubMed DOI PMC

Thery C, Amigorena S, Raposo G, Clayton A. Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr Protoc Cell Biol 2006; Chapter 3:Unit 3 22; 3.22.1-29; PMID:18228490 PubMed

Gourzones C, Gelin A, Bombik I, Klibi J, Verillaud B, Guigay J, Lang P, Temam S, Schneider V, Amiel C et al.. Extra-cellular release and blood diffusion of BART viral micro-RNAs produced by EBV-infected nasopharyngeal carcinoma cells. Virol J 2010; 7:271; PMID:20950422; http://dx.doi.org/ 10.1186/1743-422X-7-271 PubMed DOI PMC

Apcher S, Daskalogianni C, Manoury B, Fahraeus R. Epstein Barr virus-encoded EBNA1 interference with MHC class I antigen presentation reveals a close correlation between mRNA translation initiation and antigen presentation. PLoS Pathogens 2010; 6:e1001151; PMID:20976201; http://dx.doi.org/ 10.1371/journal.ppat.1001151 PubMed DOI PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...