Two flagellar BAR domain proteins in Trypanosoma brucei with stage-specific regulation

. 2016 Oct 25 ; 6 () : 35826. [epub] 20161025

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid27779220

Trypanosomes are masters of adaptation to different host environments during their complex life cycle. Large-scale proteomic approaches provide information on changes at the cellular level, and in a systematic way. However, detailed work on single components is necessary to understand the adaptation mechanisms on a molecular level. Here, we have performed a detailed characterization of a bloodstream form (BSF) stage-specific putative flagellar host adaptation factor Tb927.11.2400, identified previously in a SILAC-based comparative proteome study. Tb927.11.2400 shares 38% amino acid identity with TbFlabarin (Tb927.11.2410), a procyclic form (PCF) stage-specific flagellar BAR domain protein. We named Tb927.11.2400 TbFlabarin-like (TbFlabarinL), and demonstrate that it originates from a gene duplication event, which occurred in the African trypanosomes. TbFlabarinL is not essential for the growth of the parasites under cell culture conditions and it is dispensable for developmental differentiation from BSF to the PCF in vitro. We generated TbFlabarinL-specific antibodies, and showed that it localizes in the flagellum. Co-immunoprecipitation experiments together with a biochemical cell fractionation suggest a dual association of TbFlabarinL with the flagellar membrane and the components of the paraflagellar rod.

Zobrazit více v PubMed

Jensen R. E. & Englund P. T. Network news: the replication of kinetoplast DNA. Annu. Rev. Microbiol. 66, 473–491 (2012). PubMed

Lopes A. H. et al.. Trypanosomatids: Odd Organisms, Devastating Diseases. Open Parasitol. J. 4 (2010).

Trindade S. et al.. Trypanosoma brucei Parasites Occupy and Functionally Adapt to the Adipose Tissue in Mice. Cell Host Microbe 19, 837–848 (2016). PubMed PMC

Morrison L. J., Marcello L. & McCulloch R. Antigenic variation in the African trypanosome: molecular mechanisms and phenotypic complexity. Cell. Microbiol. 11, 1724–1734 (2009). PubMed

Vassella E., Reuner B., Yutzy B. & Boshart M. Differentiation of African trypanosomes is controlled by a density sensing mechanism which signals cell cycle arrest via the cAMP pathway. J. Cell Sci. 110, 2661–2671 (1997). PubMed

Roditi I. et al.. Procyclin gene expression and loss of the variant surface glycoprotein during differentiation of Trypanosoma brucei. J. Cell Biol. 108, 737–746 (1989). PubMed PMC

Tetley L. & Vickerman K. Differentiation in Trypanosoma brucei: host-parasite cell junctions and their persistence during acquisition of the variable antigen coat. J. Cell Sci. 74, 1–19 (1985). PubMed

Vickerman K. Developmental cycles and biology of pathogenic trypanosomes. Br. Med. Bull. 41, 105–114 (1985). PubMed

Siegel T. N., Hekstra D. R., Wang X., Dewell S. & Cross G. A. M. Genome-wide analysis of mRNA abundance in two life-cycle stages of Trypanosoma brucei and identification of splicing and polyadenylation sites. Nucleic Acids Res. 38, 4946–4957 (2010). PubMed PMC

Queiroz R., Benz C., Fellenberg K., Hoheisel J. D. & Clayton C. Transcriptome analysis of differentiating trypanosomes reveals the existence of multiple post-transcriptional regulons. BMC Genomics 10, 495 (2009). PubMed PMC

Kabani S. et al.. Genome-wide expression profiling of in vivo-derived bloodstream parasite stages and dynamic analysis of mRNA alterations during synchronous differentiation in Trypanosoma brucei. BMC Genomics 10, 427 (2009). PubMed PMC

Clayton C. The regulation of trypanosome gene expression by RNA-binding proteins. PLoS Pathog. 9, e1003680 (2013). PubMed PMC

Manful T., Fadda A. & Clayton C. The role of the 5′-3′ exoribonuclease XRNA in transcriptome-wide mRNA degradation. RNA 17, 2039–2047 (2011). PubMed PMC

Vasquez J.-J., Hon C.-C., Vanselow J. T., Schlosser A. & Siegel T. N. Comparative ribosome profiling reveals extensive translational complexity in different Trypanosoma brucei life cycle stages. Nucleic Acids Res. 42, 3623–3637 (2014). PubMed PMC

Jensen B. C. et al.. Extensive stage-regulation of translation revealed by ribosome profiling of Trypanosoma brucei. BMC Genomics 15, 911 (2014). PubMed PMC

Butter F. et al.. Comparative proteomics of two life cycle stages of stable isotope-labeled Trypanosoma brucei reveals novel components of the parasite’s host adaptation machinery. Molecular & Cellular Proteomics 12, 172–179 (2012). PubMed PMC

Gunasekera K., Wüthrich D., Braga-Lagache S., Heller M. & Ochsenreiter T. Proteome remodelling during development from blood to insect-form Trypanosoma brucei quantified by SILAC and mass spectrometry. BMC Genomics 13, 556 (2012). PubMed PMC

Urbaniak M. D., Guther M. L. S. & Ferguson M. A. J. Comparative SILAC proteomic analysis of Trypanosoma brucei bloodstream and procyclic lifecycle stages. PLoS One 7, e36619 (2012). PubMed PMC

Dejung M. et al.. Quantitative Proteomics Uncovers Novel Factors Involved in Developmental Differentiation of Trypanosoma brucei. PLoS Pathog. 12, e1005439 (2016). PubMed PMC

Wheeler R. J., Gluenz E. & Gull K. The limits on trypanosomatid morphological diversity. PLoS One 8, e79581 (2013). PubMed PMC

Gull K. The cytoskeleton of trypanosomatid parasites. Annu. Rev. Microbiol. 53, 629–655 (1999). PubMed

Engstler M. et al.. Kinetics of endocytosis and recycling of the GPI-anchored variant surface glycoprotein in Trypanosoma brucei. J. Cell Sci. 117, 1105–1115 (2004). PubMed

Grünfelder C. G. et al.. Endocytosis of a glycosylphosphatidylinositol-anchored protein via clathrin-coated vesicles, sorting by default in endosomes, and exocytosis via RAB11-positive carriers. Mol. Biol. Cell 14, 2029–2040 (2003). PubMed PMC

Lacomble S. et al.. Basal body movements orchestrate membrane organelle division and cell morphogenesis in Trypanosoma brucei. J. Cell Sci. 123, 2884–2891 (2010). PubMed PMC

Lacomble S. et al.. Three-dimensional cellular architecture of the flagellar pocket and associated cytoskeleton in trypanosomes revealed by electron microscope tomography. J. Cell Sci. 122, 1081–1090 (2009). PubMed PMC

Vaughan S., Kohl L., Ngai I., Wheeler R. J. & Gull K. A repetitive protein essential for the flagellum attachment zone filament structure and function in Trypanosoma brucei. Protist 159, 127–136 (2008). PubMed

Sunter J. D., Varga V., Dean S. & Gull K. A dynamic coordination of flagellum and cytoplasmic cytoskeleton assembly specifies cell morphogenesis in trypanosomes. J. Cell Sci. 128, 1580–1594 (2015). PubMed PMC

Zhou Q., Hu H., He C. Y. & Li Z. Assembly and maintenance of the flagellum attachment zone filament in Trypanosoma brucei. J. Cell Sci. 128, 2361–2372 (2015). PubMed PMC

Sunter J. D. & Gull K. The Flagellum Attachment Zone: ‘The Cellular Ruler’ of Trypanosome Morphology. Trends Parasitol. 32, 309–324 (2016). PubMed PMC

Subota I. et al.. Proteomic analysis of intact flagella of procyclic Trypanosoma brucei cells identifies novel flagellar proteins with unique sub-localization and dynamics. Mol. Cell. Proteomics 13, 1769–1786 (2014). PubMed PMC

Oberholzer M. et al.. Independent analysis of the flagellum surface and matrix proteomes provides insight into flagellum signaling in mammalian-infectious Trypanosoma brucei. Mol. Cell. Proteomics 10, M111.010538 (2011). PubMed PMC

Shimogawa M. M. et al.. Cell surface proteomics provides insight into stage-specific remodeling of the host-parasite interface in Trypanosoma brucei. Mol. Cell. Proteomics M114.045146 (2015). PubMed PMC

Tetley L. & Vickerman K. Differentiation in Trypanosoma brucei: host-parasite cell junctions and their persistence during acquisition of the variable antigen coat. J. Cell Sci. 74, 1–19 (1985). PubMed

Saada E. A. et al.. Insect stage-specific receptor adenylate cyclases are localized to distinct subdomains of the Trypanosoma brucei Flagellar membrane. Eukaryot. Cell 13, 1064–1076 (2014). PubMed PMC

Langousis G. & Hill K. L. Motility and more: the flagellum of Trypanosoma brucei. Nat. Rev. Microbiol. 12, 505–518 (2014). PubMed PMC

Ooi C.-P. et al.. The Flagellar Arginine Kinase in Trypanosoma brucei Is Important for Infection in Tsetse Flies. PLoS One 10, e0133676 (2015). PubMed PMC

Bargul J. L. et al.. Species-Specific Adaptations of Trypanosome Morphology and Motility to the Mammalian Host. PLoS Pathog. 12, e1005448 (2016). PubMed PMC

Lefebvre M. et al.. LdFlabarin, a new BAR domain membrane protein of Leishmania flagellum. PLoS One 8, e76380 (2013). PubMed PMC

Aslett M. et al.. TriTrypDB: a functional genomic resource for the Trypanosomatidae. Nucleic Acids Res. 38, D457–D462 (2010). PubMed PMC

Papadopoulos J. S. & Agarwala R. COBALT: constraint-based alignment tool for multiple protein sequences. Bioinformatics 23, 1073–1079 (2007). PubMed

Robert X. & Gouet P. Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Res. 42, W320–W324 (2014). PubMed PMC

Kelley L. A., Mezulis S., Yates C. M., Wass M. N. & Sternberg M. J. E. The Phyre2 web portal for protein modeling, prediction and analysis. Nat. Protoc. 10, 845–858 (2015). PubMed PMC

Pettersen E. F. et al.. UCSF Chimera–a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004). PubMed

Wirtz E., Leal S., Ochatt C. & Cross G. M. A tightly regulated inducible expression system for conditional gene knock-outs and dominant-negative genetics in Trypanosoma brucei. Mol. Biochem. Parasitol. 99, 89–101 (1999). PubMed

Hirumi H. & Hirumi K. Continuous cultivation of Trypanosoma brucei blood stream forms in a medium containing a low concentration of serum protein without feeder cell layers. J. Parasitol. 75, 985–989 (1989). PubMed

Brun R. & Schönenberger. Cultivation and in vitro cloning or procyclic culture forms of Trypanosoma brucei in a semi-defined medium. Short communication. Acta Trop. 36, 289–292 (1979). PubMed

Burkard G., Fragoso C. M. & Roditi I. Highly efficient stable transformation of bloodstream forms of Trypanosoma brucei. Mol. Biochem. Parasitol. 153, 220–223 (2007). PubMed

Vassella E. et al.. Deletion of a novel protein kinase with PX and FYVE-related domains increases the rate of differentiation of Trypanosoma brucei. Mol. Microbiol. 41, 33–46 (2001). PubMed

MacGregor P., Rojas F., Dean S. & Matthews K. R. Stable transformation of pleomorphic bloodstream form Trypanosoma brucei. Mol. Biochem. Parasitol. 190, 60–62 (2013). PubMed PMC

Overath P., Czichos J. & Haas C. The effect of citrate/ cis-aconitate on oxidative metabolism during transformation of Trypanosoma brucei. Eur. J. Biochem. 160, 175–182 (1986). PubMed

Alsford S. & Horn D. Single-locus targeting constructs for reliable regulated RNAi and transgene expression in Trypanosoma brucei. Mol. Biochem. Parasitol. 161, 76–79 (2008). PubMed PMC

Kelly S. et al.. Functional genomics in Trypanosoma brucei: A collection of vectors for the expression of tagged proteins from endogenous and ectopic gene loci. Mol. Biochem. Parasitol. 154, 103–109 (2007). PubMed PMC

Kohl L., Sherwin T. & Gull K. Assembly of the paraflagellar rod and the flagellum attachment zone complex during the Trypanosoma brucei cell cycle. J. Eukaryot. Microbiol. 46, 105–109 (1999). PubMed

Woods A. et al.. Definition of individual components within the cytoskeleton of Trypanosoma brucei by a library of monoclonal antibodies. J. Cell Sci. 93, 491–500 (1989). PubMed

Bastin P., Bagherzadeh A., Matthews K. R. & Gull K. A novel epitope tag system to study protein targeting and organelle biogenesis in Trypanosoma brucei. Mol. Biochem. Parasitol. 77, 235–239 (1996). PubMed

Morriswood B. et al.. Novel bilobe components in Trypanosoma brucei identified using proximity-dependent biotinylation. Eukaryot. Cell 12, 356–367 (2013). PubMed PMC

Shevchenko A., Tomas H., Havlis J., Olsen J. V. & Mann M. In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat. Protoc. 1, 2856–2860 (2006). PubMed

Cox J. & Mann M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 26, 1367–1372 (2008). PubMed

Esson H. J. et al.. Morphology of the trypanosome bilobe, a novel cytoskeletal structure. Eukaryot. Cell 11, 761–772 (2012). PubMed PMC

Morriswood B. & Schmidt K. A MORN-repeat protein facilitates protein entry into the flagellar pocket of Trypanosoma brucei. Eukaryot. Cell EC. 00094-15 (2015). PubMed PMC

Schäffer A. A. et al.. Improving the accuracy of PSI-BLAST protein database searches with composition-based statistics and other refinements. Nucleic Acids Res. 29, 2994–3005 (2001). PubMed PMC

Altschul S. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402 (1997). PubMed PMC

Mim C. & Unger V. M. Membrane curvature and its generation by BAR proteins. Trends Biochem. Sci. 37, 526–533 (2012). PubMed PMC

Li L., Stoeckert C. J. & Roos D. S. OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Res. 13, 2178–2189 (2003). PubMed PMC

Chen F., Mackey A. J., Stoeckert C. J. & Roos D. S. OrthoMCL-DB: querying a comprehensive multi-species collection of ortholog groups. Nucleic Acids Res. 34, D363–D368 (2006). PubMed PMC

Maric D. et al.. Molecular determinants of ciliary membrane localization of Trypanosoma cruzi flagellar calcium-binding protein. J. Biol. Chem. 286, 33109–33117 (2011). PubMed PMC

Saborio J. L. et al.. Isolation and characterization of paraflagellar proteins from Trypanosoma cruzi. J. Biol. Chem. 264, 4071–4075 (1989). PubMed

Fouts D. L. et al.. Evidence for Four Distinct Major Protein Components in the Paraflagellar Rod of Trypanosoma cruzi. J. Biol. Chem. 273, 21846–21855 (1998). PubMed

Lacomble S., Portman N. & Gull K. A protein-protein interaction map of the Trypanosoma brucei paraflagellar rod. PLoS One 4, e7685 (2009). PubMed PMC

Szempruch A. J. et al.. Extracellular Vesicles from Trypanosoma brucei Mediate Virulence Factor Transfer and Cause Host Anemia. Cell 164, 246–257 (2016). PubMed PMC

Banks K. L. Binding of Trypanosoma congolense to the Walls of Small Blood Vessels*. J. Protozool. 25, 241–245 (1978). PubMed

Claes F., Büscher P., Touratier L. & Goddeeris B. M. Trypanosoma equiperdum: master of disguise or historical mistake? Trends Parasitol. 21, 316–321 (2005). PubMed

Resh M. D. Fatty acylation of proteins: new insights into membrane targeting of myristoylated and palmitoylated proteins. Biochim. Biophys. Acta–Mol. Cell Res. 1451, 1–16 (1999). PubMed

Portman N., Lacomble S., Thomas B., McKean P. G. & Gull K. Combining RNA interference mutants and comparative proteomics to identify protein components and dependences in a eukaryotic flagellum. J. Biol. Chem. 284, 5610–5619 (2009). PubMed PMC

Boman A. & Kahn R. Arf proteins: the membrane traffic police? Trends Biochem. Sci. 20, 147–150 (1995). PubMed

Amor J. C., Harrison D. H., Kahn R. A. & Ringe D. Structure of the human ADP-ribosylation factor 1 complexed with GDP. Nature 372, 704–708 (1994). PubMed

Tetaud E. et al.. TbFlabarin, a flagellar protein of Trypanosoma brucei, highlights differences between Leishmania and Trypanosoma flagellar-targeting signals. Exp. Parasitol. 166, 97–107 (2016). PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...