Prognostic Importance of Cell Cycle Regulators Cyclin D1 (CCND1) and Cyclin-Dependent Kinase Inhibitor 1B (CDKN1B/p27) in Sporadic Gastric Cancers

. 2016 ; 2016 () : 9408190. [epub] 20161003

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid27781065

Background. Gastric cancer is known for a notable variety in the course of the disease. Clinical factors, such as tumor stage, grade, and localization, are key in patient survival. It is expected that molecular factors such as somatic mutations and gene amplifications are also underlying tumor biological behavior and may serve as factors for prognosis estimation. Aim. The purpose of this study was to examine gene amplifications from a panel of genes to uncover potential prognostic marker candidates. Methods. A panel of gene amplifications including 71 genes was tested by multiplex ligation-dependent probe amplification (MLPA) technique in 76 gastric cancer samples from a Caucasian population. The correlation of gene amplification status with patient survival was determined by the Kaplan-Meier method. Results. The amplification of two cell cycle regulators, CCND1 and CDKN1B, was identified to have a negative prognostic role. The medial survival of patients with gastric cancer displaying amplification compared to patients without amplification was 192 versus 725 days for CCND1 (P = 0.0012) and 165 versus 611 days for CDKN1B (P = 0.0098). Conclusion. Gene amplifications of CCND1 and CDKN1B are potential candidates to serve as prognostic markers for the stratification of patients based on the estimate of survival in the management of gastric cancer patients.

Zobrazit více v PubMed

Crew K. D., Neugut A. I. Epidemiology of gastric cancer. World Journal of Gastroenterology. 2006;12(3):354–362. doi: 10.3748/wjg.v12.i3.354. PubMed DOI PMC

Shikata K., Kiyohara Y., Kubo M., et al. A prospective study of dietary salt intake and gastric cancer incidence in a defined Japanese population: the Hisayama study. International Journal of Cancer. 2006;119(1):196–201. doi: 10.1002/ijc.21822. PubMed DOI

The EUROGAST Study Group. An international association between Helicobacter pylori infection and gastric cancer. The Lancet. 1993;341:1359–1362. PubMed

Matsuda T., Saika K. The 5-year relative survival rate of stomach cancer in the USA, Europe and Japan. Japanese Journal of Clinical Oncology. 2013;43(11):1157–1158. doi: 10.1093/jjco/hyt166. PubMed DOI

Lauren P. The two histological main types of gastric carcinoma: diffuse and so-called intestinal-type carcinoma. An attempt at a histo-clinical classification. Acta Pathologica et Microbiologica Scandinavica. 1965;64:31–49. PubMed

Solcia E., Fiocca R., Luinetti O., et al. Intestinal and diffuse gastric cancers arise in a different background of Helicobacter pylori gastritis through different gene involvement. The American Journal of Surgical Pathology. 1996;20(supplement 1):S8–S22. doi: 10.1097/00000478-199600001-00003. PubMed DOI

Ranzani G. N., Luinetti O., Padovan L. S., et al. p53 gene mutations and protein nuclear accumulation are early events in intestinal type gastric cancer but late events in diffuse type. Cancer Epidemiology Biomarkers and Prevention. 1995;4(3):223–231. PubMed

Yamashita K., Sakuramoto S., Katada N., et al. Diffuse type advanced gastric cancer showing dismal prognosis is characterized by deeper invasion and emerging peritoneal cancer cell: the latest comparative study to intestinal advanced gastric cancer. Hepato-Gastroenterology. 2009;56(89):276–281. PubMed

Hu B., El Hajj N., Sittler S., Lammert N., Barnes R., Meloni-Ehrig A. Gastric cancer: classification, histology and application of molecular pathology. Journal of Gastrointestinal Oncology. 2012;3(3):251–261. doi: 10.3978/j.issn.2078-6891.2012.021. PubMed DOI PMC

Jang B.-G., Kim W. H. Molecular pathology of gastric carcinoma. Pathobiology. 2011;78(6):302–310. doi: 10.1159/000321703. PubMed DOI

Calvet X., Ramírez Lázaro M.-J., Lehours P., Mégraud F. Diagnosis and epidemiology of Helicobacter pylori infection. Helicobacter. 2013;18(1):5–11. doi: 10.1111/hel.12071. PubMed DOI

Eusebi L. H., Zagari R. M., Bazzoli F. Epidemiology of Helicobacter pylori infection. Helicobacter. 2014;19(supplement 1):1–5. doi: 10.1111/hel.12165. PubMed DOI

Pilotto A., Franceschi M. Helicobacter pylori infection in older people. World Journal of Gastroenterology. 2014;20(21):6364–6373. doi: 10.3748/wjg.v20.i21.6364. PubMed DOI PMC

Kume T., Oshima K., Shinohara T., et al. Low rate of apoptosis and overexpression of bcl-2 in Epstein-Barr virus- associated gastric carcinoma. Histopathology. 1999;34(6):502–509. doi: 10.1111/j.1365-2559.1999.00686.x. PubMed DOI

NCI annual cancer statistics, 2016, http://www.cancer.gov/statistics/find.

Bang Y.-J., Van Cutsem E., Feyereislova A., et al. Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): a phase 3, open-label, randomised controlled trial. The Lancet. 2010;376(9742):687–697. doi: 10.1016/s0140-6736(10)61121-x. PubMed DOI

Gravalos C., Jimeno A. HER2 in gastric cancer: a new prognostic factor and a novel therapeutic target. Annals of Oncology. 2008;19(9):1523–1529. doi: 10.1093/annonc/mdn169. PubMed DOI

Jørgensen J. T. Targeted HER2 treatment in advanced gastric cancer. Oncology. 2010;78(1):26–33. doi: 10.1159/000288295. PubMed DOI

Deng N., Goh L. K., Wang H., et al. A comprehensive survey of genomic alterations in gastric cancer reveals systematic patterns of molecular exclusivity and co-occurrence among distinct therapeutic targets. Gut. 2012;61(5):673–684. doi: 10.1136/gutjnl-2011-301839. PubMed DOI PMC

Cancer Genome Atlas Research Network. Comprehensive molecular characterization of gastric adenocarcinoma. Nature. 2014;513(7517):202–209. PubMed PMC

Cristescu R., Lee J., Nebozhyn M., et al. Molecular analysis of gastric cancer identifies subtypes associated with distinct clinical outcomes. Nature Medicine. 2015;21(5):449–456. doi: 10.1038/nm.3850. PubMed DOI

Bizari L., Borim A. A., Leite K. R. M., et al. Alterations of the CCND1 and HER-2/neu (ERBB2) proteins in esophageal and gastric cancers. Cancer Genetics and Cytogenetics. 2006;165(1):41–50. doi: 10.1016/j.cancergencyto.2005.08.031. PubMed DOI

Tajiri R., Ooi A., Fujimura T., et al. Intratumoral heterogeneous amplification of ERBB2 and subclonal genetic diversity in gastric cancers revealed by multiple ligation-dependent probe amplification and fluorescence in situ hybridization. Human Pathology. 2014;45(4):725–734. doi: 10.1016/j.humpath.2013.11.004. PubMed DOI

Das K., Gunasegaran B., Tan I. B., Deng N., Lim K. H., Tan P. Mutually exclusive FGFR2, HER2, and KRAS gene amplifications in gastric cancer revealed by multicolour FISH. Cancer Letters. 2014;353(2):167–175. doi: 10.1016/j.canlet.2014.07.021. PubMed DOI

Ooi A., Oyama T., Nakamura R., et al. Semi-comprehensive analysis of gene amplification in gastric cancers using multiplex ligation-dependent probe amplification and fluorescence in situ hybridization. Modern Pathology. 2015;28(6):861–871. doi: 10.1038/modpathol.2015.33. PubMed DOI

Stahl P., Seeschaaf C., Lebok P., et al. Heterogeneity of amplification of HER2, EGFR, CCND1 and MYC in gastric cancer. BMC Gastroenterology. 2015;15, article 7 doi: 10.1186/s12876-015-0231-4. PubMed DOI PMC

Morishita A., Gong J., Masaki T. Targeting receptor tyrosine kinases in gastric cancer. World Journal of Gastroenterology. 2014;20(16):4536–4545. doi: 10.3748/wjg.v20.i16.4536. PubMed DOI PMC

Gill S., Shah A., Le N., Cook E. F., Yoshida E. M. Asian ethnicity-related differences in gastric cancer presentation and outcome among patients treated at a Canadian Cancer Center. Journal of Clinical Oncology. 2003;21(11):2070–2076. doi: 10.1200/JCO.2003.11.054. PubMed DOI

Bonequi P., Meneses-González F., Correa P., Rabkin C. S., Camargo M. C. Risk factors for gastric cancer in Latin America: a meta-analysis. Cancer Causes and Control. 2013;24(2):217–231. doi: 10.1007/s10552-012-0110-z. PubMed DOI PMC

Farshid G. Multiplex ligation-dependent probe amplification for HER2 testing in breast cancer. Expert Review of Molecular Diagnostics. 2011;11(8):767–769. doi: 10.1586/erm.11.68. PubMed DOI

Pazhoomand R., Keyhani E., Banan M., et al. Detection of HER2 status in breast cancer: comparison of current methods with MLPA and real-time RT-PCR. Asian Pacific Journal of Cancer Prevention. 2013;14(12):7621–7628. doi: 10.7314/apjcp.2013.14.12.7621. PubMed DOI

Wang T., Amemiya Y., Henry P., Seth A., Hanna W., Hsieh E. T. Multiplex ligation-dependent probe amplification can clarify HER2 status in gastric cancers with ‘polysomy 17’. Journal of Cancer. 2015;6(5):403–408. doi: 10.7150/jca.11424. PubMed DOI PMC

Fiala O., Pesek M., Finek J., et al. Epidermal growth factor receptor gene amplification in patients with advanced-stage NSCLC. Anticancer Research. 2016;36(1):455–460. PubMed

Kris M. G., Johnson B. E., Berry L. D., et al. Using multiplexed assays of oncogenic drivers in lung cancers to select targeted drugs. The Journal of the American Medical Association. 2014;311(19):1998–2006. doi: 10.1001/jama.2014.3741. PubMed DOI PMC

Brachtel E. F., Operaña T. N., Sullivan P. S., et al. Molecular classification of cancer with the 92-gene assay in cytology and limited tissue samples. Oncotarget. 2016;28:27220–27231. PubMed PMC

Matsumoto T., Sasako M., Mizusawa J., et al. HER2 expression in locally advanced gastric cancer with extensive lymph node (bulky N2 or paraaortic) metastasis (JCOG1005-A trial) Gastric Cancer. 2014;18(3):467–475. doi: 10.1007/s10120-014-0398-3. PubMed DOI

Fuse N., Kuboki Y., Kuwata T., et al. Prognostic impact of HER2, EGFR, and c-MET status on overall survival of advanced gastric cancer patients. Gastric Cancer. 2016;19(1):183–191. doi: 10.1007/s10120-015-0471-6. PubMed DOI

Lavoie J. N., Rivard N., L'Allemain G., Pouysségur J. A temporal and biochemical link between growth factor-activated MAP kinases, cyclin D1 induction and cell cycle entry. Progress in Cell Cycle Research. 1996;2:49–58. PubMed

Deshpande A., Sicinski P., Hinds P. W. Cyclins and cdks in development and cancer: a perspective. Oncogene. 2005;24(17):2909–2915. doi: 10.1038/sj.onc.1208618. PubMed DOI

Musgrove E. A., Caldon C. E., Barraclough J., Stone A., Sutherland R. L. Cyclin D as a therapeutic target in cancer. Nature Reviews Cancer. 2011;11(8):558–572. doi: 10.1038/nrc3090. PubMed DOI

Holm K., Staaf J., Jönsson G., et al. Characterisation of amplification patterns and target genes at chromosome 11q13 in CCND1-amplified sporadic and familial breast tumours. Breast Cancer Research and Treatment. 2012;133(2):583–594. doi: 10.1007/s10549-011-1817-3. PubMed DOI

Ma L., Wang X., Lan F., et al. Prognostic value of differential CCND1 expression in patients with resected gastric adenocarcinoma. Medical Oncology. 2015;32(1, article 338) doi: 10.1007/s12032-014-0338-4. PubMed DOI

Riquelme I., Saavedra K., Espinoza J. A., et al. Molecular classification of gastric cancer: towards a pathwaydriven targeted therapy. Oncotarget. 2015;6(28):24750–24779. doi: 10.18632/oncotarget.4990. PubMed DOI PMC

Ray A., James M. K., Larochelle S., Fisher R. P., Blain S. W. p27Kip1 inhibits cyclin D-cyclin-dependent kinase 4 by two independent modes. Molecular and Cellular Biology. 2009;29(4):986–999. doi: 10.1128/mcb.00898-08. PubMed DOI PMC

Müller W., Noguchi T., Wirtz H.-C., Hommel G., Gabbert H. E. Expression of cell-cycle regulatory proteins cyclin D1, cyclin E, and their inhibitor p21 WAF1/CIP1 in gastric cancer. Journal of Pathology. 1999;189(2):186–193. PubMed

Takano Y., Kato Y., van Diest P. J., Masuda M., Mitomi H., Okayasu I. Cyclin D2 overexpression and lack of p27 correlate positively and cyclin E inversely with a poor prognosis in gastric cancer cases. The American Journal of Pathology. 2000;156(2):585–594. doi: 10.1016/s0002-9440(10)64763-3. PubMed DOI PMC

Aoyagi K., Kouhuji K., Miyagi M., et al. Expression of p27Kip1 protein in gastric carcinoma. Hepatogastroenterology. 2013;60(121):390–394. PubMed

Larrea M. D., Hong F., Wander S. A., et al. RSK1 drives p27Kip1 phosphorylation at T198 to promote RhoA inhibition and increase cell motility. Proceedings of the National Academy of Sciences of the United States of America. 2009;106(23):9268–9273. doi: 10.1073/pnas.0805057106. PubMed DOI PMC

Serres M. P., Zlotek-Zlotkiewicz E., Concha C., et al. Cytoplasmic p27 is oncogenic and cooperates with Ras both in vivo and in vitro. Oncogene. 2011;30(25):2846–2858. doi: 10.1038/onc.2011.9. PubMed DOI

Ogino S., Shima K., Nosho K., et al. A cohort study of p27 localization in colon cancer, body mass index, and patient survival. Cancer Epidemiology Biomarkers and Prevention. 2009;18(6):1849–1858. doi: 10.1158/1055-9965.EPI-09-0181. PubMed DOI PMC

Zhao D., Besser A. H., Wander S. A., et al. Cytoplasmic p27 promotes epithelial-mesenchymal transition and tumor metastasis via STAT3-mediated Twist1 upregulation. Oncogene. 2015;34(43):5447–5459. doi: 10.1038/onc.2014.473. PubMed DOI PMC

Wen S., So Y., Singh K., et al. Promotion of cytoplasmic mislocalization of p27 by Helicobacter pylori in gastric cancer. Oncogene. 2012;31(14):1771–1780. doi: 10.1038/onc.2011.362. PubMed DOI PMC

Fiano V., Ghimenti C., Imarisio S., Silengo L., Schiffer D. pAkt, cyclin D1 and p27/Kip.1 in glioblastomas with and without EGFR amplification and PTEN mutation. Anticancer Research. 2004;24(5 A):2643–2647. PubMed

Kato S., Schwaederle M., Daniels G. A., et al. Cyclin-dependent kinase pathway aberrations in diverse malignancies: clinical and molecular characteristics. Cell Cycle. 2015;14(8):1252–1259. doi: 10.1080/15384101.2015.1014149. PubMed DOI PMC

Wander S. A., Zhao D., Slingerland J. M. p27: a barometer of signaling deregulation and potential predictor of response to targeted therapies. Clinical Cancer Research. 2011;17(1):12–18. doi: 10.1158/1078-0432.ccr-10-0752. PubMed DOI PMC

Tsugane S., Sasazuki S. Diet and the risk of gastric cancer: review of epidemiological evidence. Gastric Cancer. 2007;10(2):75–83. doi: 10.1007/s10120-007-0420-0. PubMed DOI

Moelans C. B., Milne A. N., Morsink F. H., Offerhaus G. J. A., van Diest P. J. Low frequency of HER2 amplification and overexpression in early onset gastric cancer. Cellular Oncology. 2011;34(2):89–95. doi: 10.1007/s13402-011-0021-0. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace