Prognostic Importance of Cell Cycle Regulators Cyclin D1 (CCND1) and Cyclin-Dependent Kinase Inhibitor 1B (CDKN1B/p27) in Sporadic Gastric Cancers
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
27781065
PubMed Central
PMC5066010
DOI
10.1155/2016/9408190
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Background. Gastric cancer is known for a notable variety in the course of the disease. Clinical factors, such as tumor stage, grade, and localization, are key in patient survival. It is expected that molecular factors such as somatic mutations and gene amplifications are also underlying tumor biological behavior and may serve as factors for prognosis estimation. Aim. The purpose of this study was to examine gene amplifications from a panel of genes to uncover potential prognostic marker candidates. Methods. A panel of gene amplifications including 71 genes was tested by multiplex ligation-dependent probe amplification (MLPA) technique in 76 gastric cancer samples from a Caucasian population. The correlation of gene amplification status with patient survival was determined by the Kaplan-Meier method. Results. The amplification of two cell cycle regulators, CCND1 and CDKN1B, was identified to have a negative prognostic role. The medial survival of patients with gastric cancer displaying amplification compared to patients without amplification was 192 versus 725 days for CCND1 (P = 0.0012) and 165 versus 611 days for CDKN1B (P = 0.0098). Conclusion. Gene amplifications of CCND1 and CDKN1B are potential candidates to serve as prognostic markers for the stratification of patients based on the estimate of survival in the management of gastric cancer patients.
Center for Applied Genomics of Solid Tumors Genomac Research Institute 161 00 Prague Czech Republic
Department of Pathology Military University Hospital 169 02 Prague Czech Republic
Institute for Biostatistics and Analyses Faculty of Medicine Masaryk University Brno Czech Republic
Zobrazit více v PubMed
Crew K. D., Neugut A. I. Epidemiology of gastric cancer. World Journal of Gastroenterology. 2006;12(3):354–362. doi: 10.3748/wjg.v12.i3.354. PubMed DOI PMC
Shikata K., Kiyohara Y., Kubo M., et al. A prospective study of dietary salt intake and gastric cancer incidence in a defined Japanese population: the Hisayama study. International Journal of Cancer. 2006;119(1):196–201. doi: 10.1002/ijc.21822. PubMed DOI
The EUROGAST Study Group. An international association between Helicobacter pylori infection and gastric cancer. The Lancet. 1993;341:1359–1362. PubMed
Matsuda T., Saika K. The 5-year relative survival rate of stomach cancer in the USA, Europe and Japan. Japanese Journal of Clinical Oncology. 2013;43(11):1157–1158. doi: 10.1093/jjco/hyt166. PubMed DOI
Lauren P. The two histological main types of gastric carcinoma: diffuse and so-called intestinal-type carcinoma. An attempt at a histo-clinical classification. Acta Pathologica et Microbiologica Scandinavica. 1965;64:31–49. PubMed
Solcia E., Fiocca R., Luinetti O., et al. Intestinal and diffuse gastric cancers arise in a different background of Helicobacter pylori gastritis through different gene involvement. The American Journal of Surgical Pathology. 1996;20(supplement 1):S8–S22. doi: 10.1097/00000478-199600001-00003. PubMed DOI
Ranzani G. N., Luinetti O., Padovan L. S., et al. p53 gene mutations and protein nuclear accumulation are early events in intestinal type gastric cancer but late events in diffuse type. Cancer Epidemiology Biomarkers and Prevention. 1995;4(3):223–231. PubMed
Yamashita K., Sakuramoto S., Katada N., et al. Diffuse type advanced gastric cancer showing dismal prognosis is characterized by deeper invasion and emerging peritoneal cancer cell: the latest comparative study to intestinal advanced gastric cancer. Hepato-Gastroenterology. 2009;56(89):276–281. PubMed
Hu B., El Hajj N., Sittler S., Lammert N., Barnes R., Meloni-Ehrig A. Gastric cancer: classification, histology and application of molecular pathology. Journal of Gastrointestinal Oncology. 2012;3(3):251–261. doi: 10.3978/j.issn.2078-6891.2012.021. PubMed DOI PMC
Jang B.-G., Kim W. H. Molecular pathology of gastric carcinoma. Pathobiology. 2011;78(6):302–310. doi: 10.1159/000321703. PubMed DOI
Calvet X., Ramírez Lázaro M.-J., Lehours P., Mégraud F. Diagnosis and epidemiology of Helicobacter pylori infection. Helicobacter. 2013;18(1):5–11. doi: 10.1111/hel.12071. PubMed DOI
Eusebi L. H., Zagari R. M., Bazzoli F. Epidemiology of Helicobacter pylori infection. Helicobacter. 2014;19(supplement 1):1–5. doi: 10.1111/hel.12165. PubMed DOI
Pilotto A., Franceschi M. Helicobacter pylori infection in older people. World Journal of Gastroenterology. 2014;20(21):6364–6373. doi: 10.3748/wjg.v20.i21.6364. PubMed DOI PMC
Kume T., Oshima K., Shinohara T., et al. Low rate of apoptosis and overexpression of bcl-2 in Epstein-Barr virus- associated gastric carcinoma. Histopathology. 1999;34(6):502–509. doi: 10.1111/j.1365-2559.1999.00686.x. PubMed DOI
NCI annual cancer statistics, 2016, http://www.cancer.gov/statistics/find.
Bang Y.-J., Van Cutsem E., Feyereislova A., et al. Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): a phase 3, open-label, randomised controlled trial. The Lancet. 2010;376(9742):687–697. doi: 10.1016/s0140-6736(10)61121-x. PubMed DOI
Gravalos C., Jimeno A. HER2 in gastric cancer: a new prognostic factor and a novel therapeutic target. Annals of Oncology. 2008;19(9):1523–1529. doi: 10.1093/annonc/mdn169. PubMed DOI
Jørgensen J. T. Targeted HER2 treatment in advanced gastric cancer. Oncology. 2010;78(1):26–33. doi: 10.1159/000288295. PubMed DOI
Deng N., Goh L. K., Wang H., et al. A comprehensive survey of genomic alterations in gastric cancer reveals systematic patterns of molecular exclusivity and co-occurrence among distinct therapeutic targets. Gut. 2012;61(5):673–684. doi: 10.1136/gutjnl-2011-301839. PubMed DOI PMC
Cancer Genome Atlas Research Network. Comprehensive molecular characterization of gastric adenocarcinoma. Nature. 2014;513(7517):202–209. PubMed PMC
Cristescu R., Lee J., Nebozhyn M., et al. Molecular analysis of gastric cancer identifies subtypes associated with distinct clinical outcomes. Nature Medicine. 2015;21(5):449–456. doi: 10.1038/nm.3850. PubMed DOI
Bizari L., Borim A. A., Leite K. R. M., et al. Alterations of the CCND1 and HER-2/neu (ERBB2) proteins in esophageal and gastric cancers. Cancer Genetics and Cytogenetics. 2006;165(1):41–50. doi: 10.1016/j.cancergencyto.2005.08.031. PubMed DOI
Tajiri R., Ooi A., Fujimura T., et al. Intratumoral heterogeneous amplification of ERBB2 and subclonal genetic diversity in gastric cancers revealed by multiple ligation-dependent probe amplification and fluorescence in situ hybridization. Human Pathology. 2014;45(4):725–734. doi: 10.1016/j.humpath.2013.11.004. PubMed DOI
Das K., Gunasegaran B., Tan I. B., Deng N., Lim K. H., Tan P. Mutually exclusive FGFR2, HER2, and KRAS gene amplifications in gastric cancer revealed by multicolour FISH. Cancer Letters. 2014;353(2):167–175. doi: 10.1016/j.canlet.2014.07.021. PubMed DOI
Ooi A., Oyama T., Nakamura R., et al. Semi-comprehensive analysis of gene amplification in gastric cancers using multiplex ligation-dependent probe amplification and fluorescence in situ hybridization. Modern Pathology. 2015;28(6):861–871. doi: 10.1038/modpathol.2015.33. PubMed DOI
Stahl P., Seeschaaf C., Lebok P., et al. Heterogeneity of amplification of HER2, EGFR, CCND1 and MYC in gastric cancer. BMC Gastroenterology. 2015;15, article 7 doi: 10.1186/s12876-015-0231-4. PubMed DOI PMC
Morishita A., Gong J., Masaki T. Targeting receptor tyrosine kinases in gastric cancer. World Journal of Gastroenterology. 2014;20(16):4536–4545. doi: 10.3748/wjg.v20.i16.4536. PubMed DOI PMC
Gill S., Shah A., Le N., Cook E. F., Yoshida E. M. Asian ethnicity-related differences in gastric cancer presentation and outcome among patients treated at a Canadian Cancer Center. Journal of Clinical Oncology. 2003;21(11):2070–2076. doi: 10.1200/JCO.2003.11.054. PubMed DOI
Bonequi P., Meneses-González F., Correa P., Rabkin C. S., Camargo M. C. Risk factors for gastric cancer in Latin America: a meta-analysis. Cancer Causes and Control. 2013;24(2):217–231. doi: 10.1007/s10552-012-0110-z. PubMed DOI PMC
Farshid G. Multiplex ligation-dependent probe amplification for HER2 testing in breast cancer. Expert Review of Molecular Diagnostics. 2011;11(8):767–769. doi: 10.1586/erm.11.68. PubMed DOI
Pazhoomand R., Keyhani E., Banan M., et al. Detection of HER2 status in breast cancer: comparison of current methods with MLPA and real-time RT-PCR. Asian Pacific Journal of Cancer Prevention. 2013;14(12):7621–7628. doi: 10.7314/apjcp.2013.14.12.7621. PubMed DOI
Wang T., Amemiya Y., Henry P., Seth A., Hanna W., Hsieh E. T. Multiplex ligation-dependent probe amplification can clarify HER2 status in gastric cancers with ‘polysomy 17’. Journal of Cancer. 2015;6(5):403–408. doi: 10.7150/jca.11424. PubMed DOI PMC
Fiala O., Pesek M., Finek J., et al. Epidermal growth factor receptor gene amplification in patients with advanced-stage NSCLC. Anticancer Research. 2016;36(1):455–460. PubMed
Kris M. G., Johnson B. E., Berry L. D., et al. Using multiplexed assays of oncogenic drivers in lung cancers to select targeted drugs. The Journal of the American Medical Association. 2014;311(19):1998–2006. doi: 10.1001/jama.2014.3741. PubMed DOI PMC
Brachtel E. F., Operaña T. N., Sullivan P. S., et al. Molecular classification of cancer with the 92-gene assay in cytology and limited tissue samples. Oncotarget. 2016;28:27220–27231. PubMed PMC
Matsumoto T., Sasako M., Mizusawa J., et al. HER2 expression in locally advanced gastric cancer with extensive lymph node (bulky N2 or paraaortic) metastasis (JCOG1005-A trial) Gastric Cancer. 2014;18(3):467–475. doi: 10.1007/s10120-014-0398-3. PubMed DOI
Fuse N., Kuboki Y., Kuwata T., et al. Prognostic impact of HER2, EGFR, and c-MET status on overall survival of advanced gastric cancer patients. Gastric Cancer. 2016;19(1):183–191. doi: 10.1007/s10120-015-0471-6. PubMed DOI
Lavoie J. N., Rivard N., L'Allemain G., Pouysségur J. A temporal and biochemical link between growth factor-activated MAP kinases, cyclin D1 induction and cell cycle entry. Progress in Cell Cycle Research. 1996;2:49–58. PubMed
Deshpande A., Sicinski P., Hinds P. W. Cyclins and cdks in development and cancer: a perspective. Oncogene. 2005;24(17):2909–2915. doi: 10.1038/sj.onc.1208618. PubMed DOI
Musgrove E. A., Caldon C. E., Barraclough J., Stone A., Sutherland R. L. Cyclin D as a therapeutic target in cancer. Nature Reviews Cancer. 2011;11(8):558–572. doi: 10.1038/nrc3090. PubMed DOI
Holm K., Staaf J., Jönsson G., et al. Characterisation of amplification patterns and target genes at chromosome 11q13 in CCND1-amplified sporadic and familial breast tumours. Breast Cancer Research and Treatment. 2012;133(2):583–594. doi: 10.1007/s10549-011-1817-3. PubMed DOI
Ma L., Wang X., Lan F., et al. Prognostic value of differential CCND1 expression in patients with resected gastric adenocarcinoma. Medical Oncology. 2015;32(1, article 338) doi: 10.1007/s12032-014-0338-4. PubMed DOI
Riquelme I., Saavedra K., Espinoza J. A., et al. Molecular classification of gastric cancer: towards a pathwaydriven targeted therapy. Oncotarget. 2015;6(28):24750–24779. doi: 10.18632/oncotarget.4990. PubMed DOI PMC
Ray A., James M. K., Larochelle S., Fisher R. P., Blain S. W. p27Kip1 inhibits cyclin D-cyclin-dependent kinase 4 by two independent modes. Molecular and Cellular Biology. 2009;29(4):986–999. doi: 10.1128/mcb.00898-08. PubMed DOI PMC
Müller W., Noguchi T., Wirtz H.-C., Hommel G., Gabbert H. E. Expression of cell-cycle regulatory proteins cyclin D1, cyclin E, and their inhibitor p21 WAF1/CIP1 in gastric cancer. Journal of Pathology. 1999;189(2):186–193. PubMed
Takano Y., Kato Y., van Diest P. J., Masuda M., Mitomi H., Okayasu I. Cyclin D2 overexpression and lack of p27 correlate positively and cyclin E inversely with a poor prognosis in gastric cancer cases. The American Journal of Pathology. 2000;156(2):585–594. doi: 10.1016/s0002-9440(10)64763-3. PubMed DOI PMC
Aoyagi K., Kouhuji K., Miyagi M., et al. Expression of p27Kip1 protein in gastric carcinoma. Hepatogastroenterology. 2013;60(121):390–394. PubMed
Larrea M. D., Hong F., Wander S. A., et al. RSK1 drives p27Kip1 phosphorylation at T198 to promote RhoA inhibition and increase cell motility. Proceedings of the National Academy of Sciences of the United States of America. 2009;106(23):9268–9273. doi: 10.1073/pnas.0805057106. PubMed DOI PMC
Serres M. P., Zlotek-Zlotkiewicz E., Concha C., et al. Cytoplasmic p27 is oncogenic and cooperates with Ras both in vivo and in vitro. Oncogene. 2011;30(25):2846–2858. doi: 10.1038/onc.2011.9. PubMed DOI
Ogino S., Shima K., Nosho K., et al. A cohort study of p27 localization in colon cancer, body mass index, and patient survival. Cancer Epidemiology Biomarkers and Prevention. 2009;18(6):1849–1858. doi: 10.1158/1055-9965.EPI-09-0181. PubMed DOI PMC
Zhao D., Besser A. H., Wander S. A., et al. Cytoplasmic p27 promotes epithelial-mesenchymal transition and tumor metastasis via STAT3-mediated Twist1 upregulation. Oncogene. 2015;34(43):5447–5459. doi: 10.1038/onc.2014.473. PubMed DOI PMC
Wen S., So Y., Singh K., et al. Promotion of cytoplasmic mislocalization of p27 by Helicobacter pylori in gastric cancer. Oncogene. 2012;31(14):1771–1780. doi: 10.1038/onc.2011.362. PubMed DOI PMC
Fiano V., Ghimenti C., Imarisio S., Silengo L., Schiffer D. pAkt, cyclin D1 and p27/Kip.1 in glioblastomas with and without EGFR amplification and PTEN mutation. Anticancer Research. 2004;24(5 A):2643–2647. PubMed
Kato S., Schwaederle M., Daniels G. A., et al. Cyclin-dependent kinase pathway aberrations in diverse malignancies: clinical and molecular characteristics. Cell Cycle. 2015;14(8):1252–1259. doi: 10.1080/15384101.2015.1014149. PubMed DOI PMC
Wander S. A., Zhao D., Slingerland J. M. p27: a barometer of signaling deregulation and potential predictor of response to targeted therapies. Clinical Cancer Research. 2011;17(1):12–18. doi: 10.1158/1078-0432.ccr-10-0752. PubMed DOI PMC
Tsugane S., Sasazuki S. Diet and the risk of gastric cancer: review of epidemiological evidence. Gastric Cancer. 2007;10(2):75–83. doi: 10.1007/s10120-007-0420-0. PubMed DOI
Moelans C. B., Milne A. N., Morsink F. H., Offerhaus G. J. A., van Diest P. J. Low frequency of HER2 amplification and overexpression in early onset gastric cancer. Cellular Oncology. 2011;34(2):89–95. doi: 10.1007/s13402-011-0021-0. PubMed DOI PMC