Image-Based Modeling of Blood Flow and Oxygen Transfer in Feto-Placental Capillaries
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
Grantová podpora
MR/N011538/1
Medical Research Council - United Kingdom
PubMed
27788214
PubMed Central
PMC5082864
DOI
10.1371/journal.pone.0165369
PII: PONE-D-16-22682
Knihovny.cz E-zdroje
- MeSH
- biologické modely * MeSH
- choriové klky embryologie MeSH
- difuze MeSH
- kapiláry metabolismus fyziologie MeSH
- krevní oběh * MeSH
- kyslík metabolismus MeSH
- lidé MeSH
- placenta krevní zásobení MeSH
- plod krevní zásobení MeSH
- těhotenství MeSH
- zobrazování trojrozměrné * MeSH
- Check Tag
- lidé MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- kyslík MeSH
During pregnancy, oxygen diffuses from maternal to fetal blood through villous trees in the placenta. In this paper, we simulate blood flow and oxygen transfer in feto-placental capillaries by converting three-dimensional representations of villous and capillary surfaces, reconstructed from confocal laser scanning microscopy, to finite-element meshes, and calculating values of vascular flow resistance and total oxygen transfer. The relationship between the total oxygen transfer rate and the pressure drop through the capillary is shown to be captured across a wide range of pressure drops by physical scaling laws and an upper bound on the oxygen transfer rate. A regression equation is introduced that can be used to estimate the oxygen transfer in a capillary using the vascular resistance. Two techniques for quantifying the effects of statistical variability, experimental uncertainty and pathological placental structure on the calculated properties are then introduced. First, scaling arguments are used to quantify the sensitivity of the model to uncertainties in the geometry and the parameters. Second, the effects of localized dilations in fetal capillaries are investigated using an idealized axisymmetric model, to quantify the possible effect of pathological placental structure on oxygen transfer. The model predicts how, for a fixed pressure drop through a capillary, oxygen transfer is maximized by an optimal width of the dilation. The results could explain the prevalence of fetal hypoxia in cases of delayed villous maturation, a pathology characterized by a lack of the vasculo-syncytial membranes often seen in conjunction with localized capillary dilations.
Zobrazit více v PubMed
Schneider H. Ontogenic changes in the nutritive function of the placenta. Placenta. 1996;17(1):15–26. 10.1016/S0143-4004(05)80639-3 PubMed DOI
Mayhew TM. Stereology and the placenta: where’s the point?–a review. Placenta. 2006;27:17–25. 10.1016/j.placenta.2005.11.006 PubMed DOI
Jirkovská M, Kubínová L, Janáček J, Moravcová M, Krejčí V, Karen P. Topological properties and spatial organization of villous capillaries in normal and diabetic placentas. J Vasc Res. 2002;39(3):268–278. PubMed
Jirkovská M, Janáček J, Kaláb J, Kubínová L. Three-dimensional arrangement of the capillary bed and its relationship to microrheology in the terminal villi of normal term placenta. Placenta. 2008;29(10):892–897. 10.1016/j.placenta.2008.07.004 PubMed DOI
Benirschke K, Kaufmann P, Baergen RN. The Pathology of the Human Placenta. 5th ed New York, NY: Springer; 2006. 10.1007/b137920 DOI
Burton GJ, Reshetnikova OS, Milovanov AP, Teleshova OV. Stereological evaluation of vascular adaptations in human placental villi to differing forms of hypoxic stress. Placenta. 1996;17(1):49–55. 10.1016/S0143-4004(05)80643-5 PubMed DOI
Jackson MR, Mayhew TM, Haas JD. On the factors which contribute to thinning of the villous membrane in human placentae at high altitude. I. Thinning and regional variation in thickness of trophoblast. Placenta. 1988;9(1):1–8. 10.1016/0143-4004(88)90067-7 PubMed DOI
Espinoza J, Sebire NJ, McAuliffe F, Krampl E, Nicolaides KH. Placental villus morphology in relation to maternal hypoxia at high altitude. Placenta. 2001;22(6):606–608. 10.1053/plac.2001.0696 PubMed DOI
Redline RW. Cerebral palsy in term infants: a clinicopathologic analysis of 158 medicolegal case reviews. Pediatr Devel Pathol. 2008;11(6):456–464. 10.2350/08-05-0468.1 PubMed DOI
Higgins M, McAuliffe FM, Mooney EE. Clinical associations with a placental diagnosis of delayed villous maturation: a retrospective study. Pediatr Devel Pathol. 2011;14(4):273–279. 10.2350/10-07-0872-OA.1 PubMed DOI
Treacy A, Higgins M, Kearney JM, McAuliffe F, Mooney EE. Delayed villous maturation of the placenta: quantitative assessment in different cohorts. Pediatr Devel Pathol. 2012;16(2):63–66. 10.2350/12-06-1218-OA.1 PubMed DOI
Redline RW. Distal villous immaturity. Diagn Histopathol. 2012;18(5):189–194. 10.1016/j.mpdhp.2012.02.002 DOI
Harteman JC, Nikkels PGJ, Benders MJNL, Kwee A, Groenendaal F, de Vries LS. Placental pathology in full-term infants with hypoxic-ischemic neonatal encephalopathy and association with magnetic resonance imaging pattern of brain injury. J Pediatr. 2013;163(4):968–975. 10.1016/j.jpeds.2013.06.010 PubMed DOI
Al-Adnani M, Marnerides A, George S, Nasir A, Weber MA. “Delayed Villous Maturation” in Placental Reporting: Concordance among Consultant Pediatric Pathologists at a Single Specialist Center. Pediatr Devel Pathol. 2015;18(5):375–379. 10.2350/12-02-1604-OA.1 PubMed DOI
Stallmach T, Hebisch G, Meier K, Dudenhausen JW, Vogel M. Rescue by birth: defective placental maturation and late fetal mortality. Obst Gynecol. 2001;97(4):505–509. 10.1097/00006250-200104000-00005 PubMed DOI
Chernyavsky IL, Jensen OE, Leach L. A mathematical model of intervillous blood flow in the human placentone. Placenta. 2010;31(1):44–52. 10.1016/j.placenta.2009.11.003 PubMed DOI
Serov AS, Salafia C, Grebenkov DS, Filoche M. The role of morphology in mathematical models of placental gas exchange. J Appl Physiol. 2016;120(10):17–28. 10.1152/japplphysiol.00543.2015 PubMed DOI
Serov AS, Salafia CM, Brownbill P, Grebenkov DS, Filoche M. Optimal villi density for maximal oxygen uptake in the human placenta. J Theor Biol. 2015;364:383–396. 10.1016/j.jtbi.2014.09.022 PubMed DOI
Serov AS, Salafia CM, Filoche M, Grebenkov DS. An analytical theory of oxygen transport in the human placenta. J Theor Biol. 2015;368:133–144. 10.1016/j.jtbi.2014.12.016 PubMed DOI
Lecarpentier E, Bhatt M, Bertin GI, Deloison B, Salomon L, Deloron P, et al. Computational Fluid Dynamic Simulations of Maternal Circulation: Wall Shear Stress in the Human Placenta and Its Biological Implications. PLOS ONE. 2016;11(1). 10.1371/journal.pone.0147262 PubMed DOI PMC
Chernyavsky IL, Leach L, Dryden IL, Jensen OE. Transport in the placenta: homogenizing haemodynamics in a disordered medium. Phil Trans R Soc A. 2011;369(1954):4162–4182. 10.1098/rsta.2011.0170 PubMed DOI
Gill JS, Salafia CM, Grebenkov D, Vvedensky DD. Modeling oxygen transport in human placental terminal villi. J Theor Biol. 2011;291:33–41. 10.1016/j.jtbi.2011.09.008 PubMed DOI
Mayo RP, Charnock-Jones DS, Burton GJ, Oyen ML. Three-dimensional modeling of human placental terminal villi. Placenta. 2016; 10.1016/j.placenta.2016.05.001 PubMed DOI
Clark AR, Lin M, Tawhai M, Saghian R, James JL. Multiscale modelling of the feto–placental vasculature. Interface Focus. 2015;5(2):20140078 10.1098/rsfs.2014.0078 PubMed DOI PMC
Yampolsky M, Salafia CM, Shlakhter O, Haas D, Eucker B, Thorp J. Modeling the variability of shapes of a human placenta. Placenta. 2008;29(9):790–797. 10.1016/j.placenta.2008.06.005 PubMed DOI PMC
Kato Y, Oyen ML, Burton GJ. Placental villous tree models for evaluating the mechanical environment in the human placenta. In: 2014 IEEE International Conference on Imaging Systems and Techniques. IEEE; 2014.
Käsinger W, Huch R, Huch A. In vivo oxygen dissociation curve for whole fetal blood: fitting the Adair equation and blood gas nomogram. Scand J Clin Lab Inv. 1981;41(7):701–707. 10.3109/00365518109090518 PubMed DOI
Geuzaine C, Remacle JF. Gmsh: A 3-D finite element mesh generator with built-in pre-and post-processing facilities. Int J Numer Meth Eng. 2009;79(11):1309–1331. 10.1002/nme.2579 DOI
Pudney C. Distance-ordered homotopic thinning: a skeletonization algorithm for 3D digital images. Comput Vis Image Und. 1998;72(3):404–413. 10.1006/cviu.1998.0680 DOI
Pries AR, Neuhaus D, Gaehtgens P. Blood viscosity in tube flow: dependence on diameter and hematocrit. Am J Physiol–Heart C. 1992;263(6):H1770–H1778. PubMed
Banerjee RK, Kwon O, Vaidya VS, Back LH. Coupled oxygen transport analysis in the avascular wall of a coronary artery stenosis during angioplasty. J Biomech. 2008;41(2):475–479. 10.1016/j.jbiomech.2007.09.011 PubMed DOI
Késmárky G, Kenyeres P, Rábai M, Tóth K. Plasma viscosity: a forgotten variable. Clin Hemorheol Micro. 2008;39(1):243–246. 10.3233/CH-2008-1088 PubMed DOI
Beard DA, Bassingthwaighte JB. Modeling advection and diffusion of oxygen in complex vascular networks. Ann Biomed Eng. 2001;29(4):298–310. 10.1114/1.1359450 PubMed DOI PMC
Higgins JM, Eddington DT, Bhatia SN, Mahadevan L. Statistical dynamics of flowing red blood cells by morphological image processing. PLoS Comput Biol. 2009;5(2):e1000288 10.1371/journal.pcbi.1000288 PubMed DOI PMC
Yamaguchi K, Nguyen-Phu D, Scheid P, Piiper J. Kinetics of O2 uptake and release by human erythrocytes studied by a stopped-flow technique. J Applied Physiol. 1985;58(4):1215–1224. PubMed
Marieb EN, Hoehn K. Human Anatomy & Physiology. San Francisco, CA: Pearson Benjamin Cummings; 2007.
Rodesch F, Simon P, Donner C, Jauniaux E. Oxygen measurements in endometrial and trophoblastic tissues during early pregnancy. Obstet Gyneco. 1992;80(2):283–285. PubMed
Carter AM. Placental oxygen consumption. Part I: in vivo studies–a review. Placenta. 2000;21:S31–S37. 10.1053/plac.1999.0513 PubMed DOI
Rannacher R. Finite Element Methods for the Incompressible Navier-Stokes Equations In: Fundamental Directions in Mathematical Fluid Mechanics. eds. Galdi GP, Heywood JG and Rannacher RB. Basel: Birkhäuser Basel; 2000. 10.1007/978-3-0348-8424-2_6 DOI
Amestoy PR, Duff IS, L’Excellent JY, Koster J. A fully asynchronous multifrontal solver using distributed dynamic scheduling. SIAM J Matrix Anal A. 2001;23(1):15–41. 10.1137/S0895479899358194 DOI
Amestoy PR, Guermouche A, L’Excellent JY, Pralet S. Hybrid scheduling for the parallel solution of linear systems. Parallel Comput. 2006;32(1):136–156. 10.1016/j.parco.2005.07.004 DOI
Heinrich JC, Pepper DW. Intermediate Finite Element Method: Fluid Flow and Heat Transfer Applications. Philadelphia, PA: Taylor & Francis; 1999.
Nocedal J, Wright S. Numerical Optimization. Berlin, Germany: Springer; 1999.
Cussler EL. Diffusion: Mass Transfer in Fluid Systems. Cambridge, UK: Cambridge University Press; 1997.
Jones AS. Heat transfer in the thermal entrance region of a flat duct. J Austral Math Soc Ser B. 1975;19(02):146–160. 10.1017/S0334270000001041 DOI
Haase AS, Chapman SJ, Tsai PA, Lohse D, Lammertink RGH. The Graetz–Nusselt problem extended to continuum flows with finite slip. J Fluid Mech. 2015;764:R3 10.1017/jfm.2014.733 DOI
Sapoval B, Filoche M, Weibel ER. Smaller is better–but not too small: a physical scale for the design of the mammalian pulmonary acinus. Proc Natl Acad Sci USA. 2002;99(16):10411–10416. 10.1073/pnas.122352499 PubMed DOI PMC
Mills AF. Heat Transfer. 2nd ed New Jersey, NJ: Prentice-Hall; 1999.
Karimu AL, Burton GJ. The effects of maternal vascular pressure on the dimensions of the placental capillaries. BJOG. 1994;101(1):57–63. 10.1111/j.1471-0528.1994.tb13011.x PubMed DOI
Brownbill P, Sibley CP. Regulation of transplacental water transfer: the role of fetoplacental venous tone. Placenta. 2006;27(6):560–567. 10.1016/j.placenta.2005.08.002 PubMed DOI
Mayhew TM, Burton GJ. Methodological problems in placental morphometry: apologia for the use of stereology based on sound sampling practice. Placenta. 1988;9(6):565–581. 10.1016/0143-4004(88)90001-X PubMed DOI
Mayhew TM, Simpson RA. Quantitative evidence for the spatial dispersal of trophoblast nuclei in human placental villi during gestation. Placenta. 1994;15(8):837–844. 10.1016/S0143-4004(05)80185-7 PubMed DOI
Krampl E, Lees C, Bland JM, Espinoza Dorado J, Moscoso G, Campbell S. Fetal biometry at 4300 m compared to sea level in Peru. Ultrasound Obst Gyn. 2000;16(1):9–18. 10.1046/j.1469-0705.2000.00156.x PubMed DOI
Kingdom J, Huppertz B, Seaward G, Kaufmann P. Development of the placental villous tree and its consequences for fetal growth. Eur J Obstet Gyn R B. 2000;92(1):35–43. 10.1016/S0301-2115(00)00423-1 PubMed DOI
Rivera RGH, Sinha K, Graham MD. Margination regimes and drainage transition in confined multicomponent suspensions. Phys Rev Lett. 2015;114(18):188101 10.1103/PhysRevLett.114.188101 PubMed DOI
Karimu AL, Burton GJ. Compliance of the human placental villus membrane at term: The concept of the fetoplacental unit as an autoregulating gas exchange system. Placenta. 1994;15:541–558. 10.1016/S0143-4004(05)80372-8 PubMed DOI