Structural basis of GM-CSF and IL-2 sequestration by the viral decoy receptor GIF
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
27819269
PubMed Central
PMC5103067
DOI
10.1038/ncomms13228
PII: ncomms13228
Knihovny.cz E-zdroje
- MeSH
- faktor stimulující granulocyto-makrofágové kolonie chemie imunologie metabolismus MeSH
- HEK293 buňky MeSH
- infekce vyvolané poxviry imunologie metabolismus virologie MeSH
- interakce hostitele a patogenu imunologie MeSH
- interleukin-2 chemie imunologie metabolismus MeSH
- krystalografie rentgenová MeSH
- lidé MeSH
- molekulární modely MeSH
- multiproteinové komplexy chemie imunologie metabolismus MeSH
- Parapoxvirus imunologie metabolismus MeSH
- vazba proteinů MeSH
- virové proteiny chemie imunologie metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- faktor stimulující granulocyto-makrofágové kolonie MeSH
- GIF protein, orf virus MeSH Prohlížeč
- interleukin-2 MeSH
- multiproteinové komplexy MeSH
- virové proteiny MeSH
Subversion of the host immune system by viruses is often mediated by molecular decoys that sequester host proteins pivotal to mounting effective immune responses. The widespread mammalian pathogen parapox Orf virus deploys GIF, a member of the poxvirus immune evasion superfamily, to antagonize GM-CSF (granulocyte macrophage colony-stimulating factor) and IL-2 (interleukin-2), two pleiotropic cytokines of the mammalian immune system. However, structural and mechanistic insights into the unprecedented functional duality of GIF have remained elusive. Here we reveal that GIF employs a dimeric binding platform that sequesters two copies of its target cytokines with high affinity and slow dissociation kinetics to yield distinct complexes featuring mutually exclusive interaction footprints. We illustrate how GIF serves as a competitive decoy receptor by leveraging binding hotspots underlying the cognate receptor interactions of GM-CSF and IL-2, without sharing any structural similarity with the cytokine receptors. Our findings contribute to the tracing of novel molecular mimicry mechanisms employed by pathogenic viruses.
Masaryk University and CEITEC 62500 Brno Czech Republic
University Grenoble Alpes CNRS CEA IBS F 38044 Grenoble France
VIB Inflammation Research Center Technologiepark 927 9052 Ghent Belgium
VIB Structural Biology Research Center Vrije Universiteit Brussel Pleinlaan 2 1040 Brussels Belgium
Zobrazit více v PubMed
Tortorella D., Gewurz B. E., Furman M. H., Schust D. J. & Ploegh H. L. Viral subversion of the immune system. Annu. Rev. Immunol. 18, 861–926 (2000). PubMed
Iannello A. et al.. Viral strategies for evading antiviral cellular immune responses of the host. J. Leukoc. Biol. 79, 16–35 (2006). PubMed
Alcami A. Viral mimicry of cytokines, chemokines and their receptors. Nat. Rev. Immunol. 3, 36–50 (2003). PubMed
Epperson M. L., Lee C. A. & Fremont D. H. Subversion of cytokine networks by virally encoded decoy receptors. Immunol. Rev. 250, 199–215 (2012). PubMed PMC
Heidarieh H., Hernaez B. & Alcami A. Immune modulation by virus-encoded chemokine binding proteins. Virus Res. 209, 67–75 (2015). PubMed
Haig D. M., Hutchinson G., Thomson J., Yirrell D. & Reid H. W. Cytolytic activity and associated serine protease expression by skin and afferent lymph CD8+ T cells during orf virus reinfection. J. Gen. Virol. 77, 953–961 (1996). PubMed
Haig D. M. & Mercer A. A. Ovine diseases. Orf. Vet. Res. 29, 311–326 (1998). PubMed
Hosamani M., Scagliarini A., Bhanuprakash V., McInnes C. J. & Singh R. K. Orf: an update on current research and future perspectives. Expert Rev. Anti-Infect. Ther. 7, 879–893 (2009). PubMed
Ara M. et al.. Giant and recurrent orf virus infection in a renal transplant recipient treated with imiquimod. J. Am. Acad. Dermatol. 58, S39–S40 (2008). PubMed
Scagliarini A. et al.. Antiviral activity of HPMPC (cidofovir) against orf virus infected lambs. Antiviral Res. 73, 169–174 (2007). PubMed PMC
Perry B. D., Randolph T. F., McDermott J. J., Sones K. R. & Thornton P. K. Investing in Animal Health Research to Alleviate Poverty. International Livestock Research Institute: Nairobi, Kenya, (2002).
Jenkinson D. M., Hutchison G. & Reid H. W. The B and T cell responses to Orf virus infection of ovine skin. Vet. Dermatol. 3, 57–64 (1992).
Lear A., Hutchison G., Reid H. W., Norval M. & Haig D. M. Phenotypic characterisation of the dendritic cells accumulating in ovine dermis following primary and secondary orf virus infections. Eur. J. Dermatol. 6, 135–140 (1996).
Haig D. M. & McInnes C. J. Immunity and counter-immunity during infection with the parapoxvirus orf virus. Virus Res. 88, 3–16 (2002). PubMed
Haig D. M. & Fleming S. Immunomodulation by virulence proteins of the parapoxvirus orf virus. Vet. Immunol. mmunopathol. 72, 81–86 (1999). PubMed
Seet B. T. et al.. Analysis of an orf virus chemokine-binding protein: shifting ligand specificities among a family of poxvirus viroceptors. Proc. Natl Acad. Sci. USA 100, 15137–15142 (2003). PubMed PMC
Haig D. M. et al.. A comparison of the anti-inflammatory and immuno-stimulatory activities of orf virus and ovine interleukin-10. Virus Res. 90, 303–316 (2002). PubMed
Lyttle D. J., Fraser K. M., Fleming S. B., Mercer A. A. & Robinson A. J. Homologs of vascular endothelial growth factor are encoded by the poxvirus orf virus. J. Virol. 68, 84–92 (1994). PubMed PMC
Haig D. M. et al.. The orf virus OV20.0L gene product is involved in interferon resistance and inhibits an interferon-inducible, double-stranded RNA-dependent kinase. Immunology 93, 335–340 (1998). PubMed PMC
Deane D. et al.. Orf virus encodes a novel secreted protein inhibitor of granulocyte-macrophage colony-stimulating factor and interleukin-2. J. Virol. 74, 1313–1320 (2000). PubMed PMC
Hamilton J. A. Colony-stimulating factors in inflammation and autoimmunity. Nat. Rev. Immunol. 8, 533–544 (2008). PubMed
Gaffen S. L. & Liu K. D. Overview of interleukin-2 function, production and clinical applications. Cytokine 28, 109–123 (2004). PubMed
Boyman O. & Sprent J. The role of interleukin-2 during homeostasis and activation of the immune system. Nat. Rev. Immunol. 12, 180–190 (2012). PubMed
Alcami A., Symons J. A., Collins P. D., Williams T. J. & Smith G. L. Blockade of chemokine activity by a soluble chemokine binding protein from vaccinia virus. J. Immunol. 160, 624–633 (1998). PubMed
Smith C. A. et al.. Poxvirus genomes encode a secreted, soluble protein that preferentially inhibits beta chemokine activity yet lacks sequence homology to known chemokine receptors. Virology 236, 316–327 (1997). PubMed
Graham K. A. et al.. The T1/35kDa family of poxvirus-secreted proteins bind chemokines and modulate leukocyte influx into virus-infected tissues. Virology 229, 12–24 (1997). PubMed
Bahar M. W. et al.. Structure and function of A41, a vaccinia virus chemokine binding protein. PLoS Pathog. 4, e5 (2008). PubMed PMC
Carfi A., Smith C. A., Smolak P. J., McGrew J. & Wiley D. C. Structure of a soluble secreted chemokine inhibitor vCCI (p35) from cowpox virus. Proc. Natl Acad. Sci. USA 96, 12379–12383 (1999). PubMed PMC
Zhang L. et al.. Solution structure of the complex between poxvirus-encoded CC chemokine inhibitor vCCI and human MIP-1beta. Proc. Natl Acad. Sci. USA 103, 13985–13990 (2006). PubMed PMC
Arnold P. L. & Fremont D. H. Structural determinants of chemokine binding by an Ectromelia virus-encoded decoy receptor. J. Virol. 80, 7439–7449 (2006). PubMed PMC
Counago R. M. et al.. Structures of Orf virus chemokine binding protein in complex with host chemokines reveal clues to broad binding specificity. Structure 23, 1199–1213 (2015). PubMed
Hansen G. et al.. The structure of the GM-CSF receptor complex reveals a distinct mode of cytokine receptor activation. Cell 134, 496–507 (2008). PubMed
Broughton S. E. et al.. Conformational changes in the GM-CSF receptor suggest a molecular mechanism for affinity conversion and receptor signaling. Structure 24, 1271–1281 (2016). PubMed
Haman A. et al.. Molecular determinants of the granulocyte-macrophage colony-stimulating factor receptor complex assembly. J. Biol. Chem. 274, 34155–34163 (1999). PubMed
Rajotte D. et al.. Crucial role of the residue R280 at the F′-G′ loop of the human granulocyte/macrophage colony-stimulating factor receptor alpha chain for ligand recognition. J. Exp. Med. 185, 1939–1950 (1997). PubMed PMC
Byun M., Wang X., Pak M., Hansen T. H. & Yokoyama W. M. Cowpox virus exploits the endoplasmic reticulum retention pathway to inhibit MHC class I transport to the cell surface. Cell Host Microbe 2, 306–315 (2007). PubMed
Franzosa E. A. & Xia Y. Structural principles within the human-virus protein-protein interaction network. Proc. Natl Acad. Sci. USA 108, 10538–10543 (2011). PubMed PMC
Wang X., Rickert M. & Garcia K. C. Structure of the quaternary complex of interleukin-2 with its alpha, beta, and gammac receptors. Science 310, 1159–1163 (2005). PubMed
Levin A. M. et al.. Exploiting a natural conformational switch to engineer an interleukin-2 'superkine'. Nature 484, 529–533 (2012). PubMed PMC
Nelson C. A., Epperson M. L., Singh S., Elliott J. I. & Fremont D. H. Structural conservation and functional diversity of the poxvirus immune evasion (PIE) domain superfamily. Viruses 7, 4878–4898 (2015). PubMed PMC
Elegheert J. et al.. Allosteric competitive inactivation of hematopoietic CSF-1 signaling by the viral decoy receptor BARF1. Nat. Struct. Mol. Biol. 19, 938–947 (2012). PubMed
Yang Z., West A. P. & Bjorkman P. J. Crystal structure of TNFalpha complexed with a poxvirus MHC-related TNF binding protein. Nat. Struct. Mol. Biol. 16, 1189–1191 (2009). PubMed PMC
Alejo A. et al.. A chemokine-binding domain in the tumor necrosis factor receptor from variola (smallpox) virus. Proc. Natl Acad. Sci. USA 103, 5995–6000 (2006). PubMed PMC
Xue X. et al.. Structural basis of chemokine sequestration by CrmD, a poxvirus-encoded tumor necrosis factor receptor. PLoS Pathog. 7, e1002162 (2011). PubMed PMC
McCoy W. H., Wang X., Yokoyama W. M., Hansen T. H. & Fremont D. H. Structural mechanism of ER retrieval of MHC class I by cowpox. PLoS Biol. 10, e1001432 (2012). PubMed PMC
Alexander J. M. et al.. Structural basis of chemokine sequestration by a herpesvirus decoy receptor. Cell 111, 343–356 (2002). PubMed
Gileva I. P. et al.. Properties of the recombinant TNF-binding proteins from variola, monkeypox, and cowpox viruses are different. Biochim. Biophys. Acta 1764, 1710–1718 (2006). PubMed PMC
Yang Z., West A. P. Jr. & Bjorkman P. J. Crystal structure of TNFalpha complexed with a poxvirus MHC-related TNF binding protein. Nat. Struct. Mol. Biol. 16, 1189–1191 (2009). PubMed PMC
Aricescu A. R., Lu W. & Jones E. Y. A time- and cost-efficient system for high-level protein production in mammalian cells. Acta Crystallogr. D Biol. Crystallogr. 62, 1243–1250 (2006). PubMed
Verstraete K. et al.. Efficient production of bioactive recombinant human Flt3 ligand in E. coli. Protein J. 28, 57–65 (2009). PubMed
Kabsch W. Xds. Acta Crystallogr. D Biol. Crystallogr. 66, 125–132 (2010). PubMed PMC
McCoy A. J. et al.. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007). PubMed PMC
Rozwarski D. A., Diederichs K., Hecht R., Boone T. & Karplus P. A. Refined crystal structure and mutagenesis of human granulocyte-macrophage colony-stimulating factor. Proteins 26, 304–313 (1996). PubMed
Adams P. D. et al.. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010). PubMed PMC
Strong M. et al.. Toward the structural genomics of complexes: crystal structure of a PE/PPE protein complex from Mycobacterium tuberculosis. Proc. Natl Acad. Sci. USA 103, 8060–8065 (2006). PubMed PMC
Blanc E. et al.. Refinement of severely incomplete structures with maximum likelihood in BUSTER-TNT. Acta Crystallogr. D Biol. Crystallogr. 60, 2210–2221 (2004). PubMed
Howarth M. & Ting A. Y. Imaging proteins in live mammalian cells with biotin ligase and monovalent streptavidin. Nat. Protoc. 3, 534–545 (2008). PubMed PMC
Ludtke S. J., Baldwin P. R. & Chiu W. EMAN: semiautomated software for high-resolution single-particle reconstructions. J. Struct. Biol. 128, 82–97 (1999). PubMed
Scheres S. H. RELION: implementation of a Bayesian approach to cryo-EM structure determination. J. Struct. Biol. 180, 519–530 (2012). PubMed PMC
Cheng Y., Grigorieff N., Penczek P. A. & Walz T. A primer to single-particle cryo-electron microscopy. Cell 161, 438–449 (2015). PubMed PMC
Penczek P. A. sxviper. SPARX Wiki http://sparx-em.org/sparxwiki/sxviper (2014).
Penczek P. A. sx3dvariability. SPARX Wiki http://sparx-em.org/sparxwiki/sx3dvariability (2014).
Mindell J. A. & Grigorieff N. Accurate determination of local defocus and specimen tilt in electron microscopy. J. Struct. Biol. 142, 334–347 (2003). PubMed
Estrozi L. F. & Navaza J. Fast projection matching for cryo-electron microscopy image reconstruction. J. Struct. Biol. 162, 324–334 (2008). PubMed
Eswar N. et al.. Comparative protein structure modeling using Modeller. Curr. Protoc. Bioinformatics Chapter 5, 6 (2006). PubMed PMC
Pettersen E. F. et al.. UCSF Chimera--a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004). PubMed
Konarev P. V., Volkov V. V., Sokolova A. V., Koch M. H. J. & Svergun D. I. PRIMUS : a Windows PC-based system for small-angle scattering data analysis. J. Appl. Crystallogr. 36, 1277–1282 (2003).
Guinier A. La diffraction des rayons X aux tres petits angles: applications a l'etude de phenomenes ultramicroscopiques. Ann. Phys. 12, 161–237 (1939).
Rambo R. P. & Tainer J. A. Accurate assessment of mass, models and resolution by small-angle scattering. Nature 496, 477–481 (2013). PubMed PMC
Petoukhov M. V. et al.. New developments in the ATSAS program package for small-angle scattering data analysis. J. Appl. Crystallogr. 45, 342–350 (2012). PubMed PMC
Fischer H., de Oliveira Neto M., Napolitano H. B., Polikarpov I. & Craievich a. F. Determination of the molecular weight of proteins in solution from a single small-angle X-ray scattering measurement on a relative scale. J. Appl. Crystallogr. 43, 101–109 (2009).
Weinkam P., Pons J. & Sali A. Structure-based model of allostery predicts coupling between distant sites. Proc. Natl Acad. Sci. USA 103, 6 (2012). PubMed PMC
Schneidman-Duhovny D., Hammel M. & Sali A. FoXS: a web server for rapid computation and fitting of SAXS profiles. Nucleic Acids Res. 38, W540–W544 (2010). PubMed PMC
Dolinsky T. J. et al.. PDB2PQR: expanding and upgrading automated preparation of biomolecular structures for molecular simulations. Nucleic acids Res. 35, W522–W525 (2007). PubMed PMC
Baker N. A., Sept D., Joseph S., Holst M. J. & McCammon J. A. Electrostatics of nanosystems: application to microtubules and the ribosome. Proc. Natl Acad. Sci. USA 98, 10037–10041 (2001). PubMed PMC
Armougom F. et al.. Expresso: automatic incorporation of structural information in multiple sequence alignments using 3D-Coffee. Nucleic Acids Res. 34, W604–W608 (2006). PubMed PMC
Robert X. & Gouet P. Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Res. 42, W320–W324 (2014). PubMed PMC
McWilliam H. et al.. Analysis Tool Web Services from the EMBL-EBI. Nucleic Acids Res. 41, W597–W600 (2013). PubMed PMC
Kearse M. et al.. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647–1649 (2012). PubMed PMC
Karplus P. A. & Diederichs K. Linking crystallographic model and data quality. Science 336, 1030–1033 (2012). PubMed PMC