Structural basis of GM-CSF and IL-2 sequestration by the viral decoy receptor GIF

. 2016 Nov 07 ; 7 () : 13228. [epub] 20161107

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid27819269

Subversion of the host immune system by viruses is often mediated by molecular decoys that sequester host proteins pivotal to mounting effective immune responses. The widespread mammalian pathogen parapox Orf virus deploys GIF, a member of the poxvirus immune evasion superfamily, to antagonize GM-CSF (granulocyte macrophage colony-stimulating factor) and IL-2 (interleukin-2), two pleiotropic cytokines of the mammalian immune system. However, structural and mechanistic insights into the unprecedented functional duality of GIF have remained elusive. Here we reveal that GIF employs a dimeric binding platform that sequesters two copies of its target cytokines with high affinity and slow dissociation kinetics to yield distinct complexes featuring mutually exclusive interaction footprints. We illustrate how GIF serves as a competitive decoy receptor by leveraging binding hotspots underlying the cognate receptor interactions of GM-CSF and IL-2, without sharing any structural similarity with the cytokine receptors. Our findings contribute to the tracing of novel molecular mimicry mechanisms employed by pathogenic viruses.

Zobrazit více v PubMed

Tortorella D., Gewurz B. E., Furman M. H., Schust D. J. & Ploegh H. L. Viral subversion of the immune system. Annu. Rev. Immunol. 18, 861–926 (2000). PubMed

Iannello A. et al.. Viral strategies for evading antiviral cellular immune responses of the host. J. Leukoc. Biol. 79, 16–35 (2006). PubMed

Alcami A. Viral mimicry of cytokines, chemokines and their receptors. Nat. Rev. Immunol. 3, 36–50 (2003). PubMed

Epperson M. L., Lee C. A. & Fremont D. H. Subversion of cytokine networks by virally encoded decoy receptors. Immunol. Rev. 250, 199–215 (2012). PubMed PMC

Heidarieh H., Hernaez B. & Alcami A. Immune modulation by virus-encoded chemokine binding proteins. Virus Res. 209, 67–75 (2015). PubMed

Haig D. M., Hutchinson G., Thomson J., Yirrell D. & Reid H. W. Cytolytic activity and associated serine protease expression by skin and afferent lymph CD8+ T cells during orf virus reinfection. J. Gen. Virol. 77, 953–961 (1996). PubMed

Haig D. M. & Mercer A. A. Ovine diseases. Orf. Vet. Res. 29, 311–326 (1998). PubMed

Hosamani M., Scagliarini A., Bhanuprakash V., McInnes C. J. & Singh R. K. Orf: an update on current research and future perspectives. Expert Rev. Anti-Infect. Ther. 7, 879–893 (2009). PubMed

Ara M. et al.. Giant and recurrent orf virus infection in a renal transplant recipient treated with imiquimod. J. Am. Acad. Dermatol. 58, S39–S40 (2008). PubMed

Scagliarini A. et al.. Antiviral activity of HPMPC (cidofovir) against orf virus infected lambs. Antiviral Res. 73, 169–174 (2007). PubMed PMC

Perry B. D., Randolph T. F., McDermott J. J., Sones K. R. & Thornton P. K. Investing in Animal Health Research to Alleviate Poverty. International Livestock Research Institute: Nairobi, Kenya, (2002).

Jenkinson D. M., Hutchison G. & Reid H. W. The B and T cell responses to Orf virus infection of ovine skin. Vet. Dermatol. 3, 57–64 (1992).

Lear A., Hutchison G., Reid H. W., Norval M. & Haig D. M. Phenotypic characterisation of the dendritic cells accumulating in ovine dermis following primary and secondary orf virus infections. Eur. J. Dermatol. 6, 135–140 (1996).

Haig D. M. & McInnes C. J. Immunity and counter-immunity during infection with the parapoxvirus orf virus. Virus Res. 88, 3–16 (2002). PubMed

Haig D. M. & Fleming S. Immunomodulation by virulence proteins of the parapoxvirus orf virus. Vet. Immunol. mmunopathol. 72, 81–86 (1999). PubMed

Seet B. T. et al.. Analysis of an orf virus chemokine-binding protein: shifting ligand specificities among a family of poxvirus viroceptors. Proc. Natl Acad. Sci. USA 100, 15137–15142 (2003). PubMed PMC

Haig D. M. et al.. A comparison of the anti-inflammatory and immuno-stimulatory activities of orf virus and ovine interleukin-10. Virus Res. 90, 303–316 (2002). PubMed

Lyttle D. J., Fraser K. M., Fleming S. B., Mercer A. A. & Robinson A. J. Homologs of vascular endothelial growth factor are encoded by the poxvirus orf virus. J. Virol. 68, 84–92 (1994). PubMed PMC

Haig D. M. et al.. The orf virus OV20.0L gene product is involved in interferon resistance and inhibits an interferon-inducible, double-stranded RNA-dependent kinase. Immunology 93, 335–340 (1998). PubMed PMC

Deane D. et al.. Orf virus encodes a novel secreted protein inhibitor of granulocyte-macrophage colony-stimulating factor and interleukin-2. J. Virol. 74, 1313–1320 (2000). PubMed PMC

Hamilton J. A. Colony-stimulating factors in inflammation and autoimmunity. Nat. Rev. Immunol. 8, 533–544 (2008). PubMed

Gaffen S. L. & Liu K. D. Overview of interleukin-2 function, production and clinical applications. Cytokine 28, 109–123 (2004). PubMed

Boyman O. & Sprent J. The role of interleukin-2 during homeostasis and activation of the immune system. Nat. Rev. Immunol. 12, 180–190 (2012). PubMed

Alcami A., Symons J. A., Collins P. D., Williams T. J. & Smith G. L. Blockade of chemokine activity by a soluble chemokine binding protein from vaccinia virus. J. Immunol. 160, 624–633 (1998). PubMed

Smith C. A. et al.. Poxvirus genomes encode a secreted, soluble protein that preferentially inhibits beta chemokine activity yet lacks sequence homology to known chemokine receptors. Virology 236, 316–327 (1997). PubMed

Graham K. A. et al.. The T1/35kDa family of poxvirus-secreted proteins bind chemokines and modulate leukocyte influx into virus-infected tissues. Virology 229, 12–24 (1997). PubMed

Bahar M. W. et al.. Structure and function of A41, a vaccinia virus chemokine binding protein. PLoS Pathog. 4, e5 (2008). PubMed PMC

Carfi A., Smith C. A., Smolak P. J., McGrew J. & Wiley D. C. Structure of a soluble secreted chemokine inhibitor vCCI (p35) from cowpox virus. Proc. Natl Acad. Sci. USA 96, 12379–12383 (1999). PubMed PMC

Zhang L. et al.. Solution structure of the complex between poxvirus-encoded CC chemokine inhibitor vCCI and human MIP-1beta. Proc. Natl Acad. Sci. USA 103, 13985–13990 (2006). PubMed PMC

Arnold P. L. & Fremont D. H. Structural determinants of chemokine binding by an Ectromelia virus-encoded decoy receptor. J. Virol. 80, 7439–7449 (2006). PubMed PMC

Counago R. M. et al.. Structures of Orf virus chemokine binding protein in complex with host chemokines reveal clues to broad binding specificity. Structure 23, 1199–1213 (2015). PubMed

Hansen G. et al.. The structure of the GM-CSF receptor complex reveals a distinct mode of cytokine receptor activation. Cell 134, 496–507 (2008). PubMed

Broughton S. E. et al.. Conformational changes in the GM-CSF receptor suggest a molecular mechanism for affinity conversion and receptor signaling. Structure 24, 1271–1281 (2016). PubMed

Haman A. et al.. Molecular determinants of the granulocyte-macrophage colony-stimulating factor receptor complex assembly. J. Biol. Chem. 274, 34155–34163 (1999). PubMed

Rajotte D. et al.. Crucial role of the residue R280 at the F′-G′ loop of the human granulocyte/macrophage colony-stimulating factor receptor alpha chain for ligand recognition. J. Exp. Med. 185, 1939–1950 (1997). PubMed PMC

Byun M., Wang X., Pak M., Hansen T. H. & Yokoyama W. M. Cowpox virus exploits the endoplasmic reticulum retention pathway to inhibit MHC class I transport to the cell surface. Cell Host Microbe 2, 306–315 (2007). PubMed

Franzosa E. A. & Xia Y. Structural principles within the human-virus protein-protein interaction network. Proc. Natl Acad. Sci. USA 108, 10538–10543 (2011). PubMed PMC

Wang X., Rickert M. & Garcia K. C. Structure of the quaternary complex of interleukin-2 with its alpha, beta, and gammac receptors. Science 310, 1159–1163 (2005). PubMed

Levin A. M. et al.. Exploiting a natural conformational switch to engineer an interleukin-2 'superkine'. Nature 484, 529–533 (2012). PubMed PMC

Nelson C. A., Epperson M. L., Singh S., Elliott J. I. & Fremont D. H. Structural conservation and functional diversity of the poxvirus immune evasion (PIE) domain superfamily. Viruses 7, 4878–4898 (2015). PubMed PMC

Elegheert J. et al.. Allosteric competitive inactivation of hematopoietic CSF-1 signaling by the viral decoy receptor BARF1. Nat. Struct. Mol. Biol. 19, 938–947 (2012). PubMed

Yang Z., West A. P. & Bjorkman P. J. Crystal structure of TNFalpha complexed with a poxvirus MHC-related TNF binding protein. Nat. Struct. Mol. Biol. 16, 1189–1191 (2009). PubMed PMC

Alejo A. et al.. A chemokine-binding domain in the tumor necrosis factor receptor from variola (smallpox) virus. Proc. Natl Acad. Sci. USA 103, 5995–6000 (2006). PubMed PMC

Xue X. et al.. Structural basis of chemokine sequestration by CrmD, a poxvirus-encoded tumor necrosis factor receptor. PLoS Pathog. 7, e1002162 (2011). PubMed PMC

McCoy W. H., Wang X., Yokoyama W. M., Hansen T. H. & Fremont D. H. Structural mechanism of ER retrieval of MHC class I by cowpox. PLoS Biol. 10, e1001432 (2012). PubMed PMC

Alexander J. M. et al.. Structural basis of chemokine sequestration by a herpesvirus decoy receptor. Cell 111, 343–356 (2002). PubMed

Gileva I. P. et al.. Properties of the recombinant TNF-binding proteins from variola, monkeypox, and cowpox viruses are different. Biochim. Biophys. Acta 1764, 1710–1718 (2006). PubMed PMC

Yang Z., West A. P. Jr. & Bjorkman P. J. Crystal structure of TNFalpha complexed with a poxvirus MHC-related TNF binding protein. Nat. Struct. Mol. Biol. 16, 1189–1191 (2009). PubMed PMC

Aricescu A. R., Lu W. & Jones E. Y. A time- and cost-efficient system for high-level protein production in mammalian cells. Acta Crystallogr. D Biol. Crystallogr. 62, 1243–1250 (2006). PubMed

Verstraete K. et al.. Efficient production of bioactive recombinant human Flt3 ligand in E. coli. Protein J. 28, 57–65 (2009). PubMed

Kabsch W. Xds. Acta Crystallogr. D Biol. Crystallogr. 66, 125–132 (2010). PubMed PMC

McCoy A. J. et al.. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007). PubMed PMC

Rozwarski D. A., Diederichs K., Hecht R., Boone T. & Karplus P. A. Refined crystal structure and mutagenesis of human granulocyte-macrophage colony-stimulating factor. Proteins 26, 304–313 (1996). PubMed

Adams P. D. et al.. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010). PubMed PMC

Strong M. et al.. Toward the structural genomics of complexes: crystal structure of a PE/PPE protein complex from Mycobacterium tuberculosis. Proc. Natl Acad. Sci. USA 103, 8060–8065 (2006). PubMed PMC

Blanc E. et al.. Refinement of severely incomplete structures with maximum likelihood in BUSTER-TNT. Acta Crystallogr. D Biol. Crystallogr. 60, 2210–2221 (2004). PubMed

Howarth M. & Ting A. Y. Imaging proteins in live mammalian cells with biotin ligase and monovalent streptavidin. Nat. Protoc. 3, 534–545 (2008). PubMed PMC

Ludtke S. J., Baldwin P. R. & Chiu W. EMAN: semiautomated software for high-resolution single-particle reconstructions. J. Struct. Biol. 128, 82–97 (1999). PubMed

Scheres S. H. RELION: implementation of a Bayesian approach to cryo-EM structure determination. J. Struct. Biol. 180, 519–530 (2012). PubMed PMC

Cheng Y., Grigorieff N., Penczek P. A. & Walz T. A primer to single-particle cryo-electron microscopy. Cell 161, 438–449 (2015). PubMed PMC

Penczek P. A. sxviper. SPARX Wiki http://sparx-em.org/sparxwiki/sxviper (2014).

Penczek P. A. sx3dvariability. SPARX Wiki http://sparx-em.org/sparxwiki/sx3dvariability (2014).

Mindell J. A. & Grigorieff N. Accurate determination of local defocus and specimen tilt in electron microscopy. J. Struct. Biol. 142, 334–347 (2003). PubMed

Estrozi L. F. & Navaza J. Fast projection matching for cryo-electron microscopy image reconstruction. J. Struct. Biol. 162, 324–334 (2008). PubMed

Eswar N. et al.. Comparative protein structure modeling using Modeller. Curr. Protoc. Bioinformatics Chapter 5, 6 (2006). PubMed PMC

Pettersen E. F. et al.. UCSF Chimera--a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004). PubMed

Konarev P. V., Volkov V. V., Sokolova A. V., Koch M. H. J. & Svergun D. I. PRIMUS : a Windows PC-based system for small-angle scattering data analysis. J. Appl. Crystallogr. 36, 1277–1282 (2003).

Guinier A. La diffraction des rayons X aux tres petits angles: applications a l'etude de phenomenes ultramicroscopiques. Ann. Phys. 12, 161–237 (1939).

Rambo R. P. & Tainer J. A. Accurate assessment of mass, models and resolution by small-angle scattering. Nature 496, 477–481 (2013). PubMed PMC

Petoukhov M. V. et al.. New developments in the ATSAS program package for small-angle scattering data analysis. J. Appl. Crystallogr. 45, 342–350 (2012). PubMed PMC

Fischer H., de Oliveira Neto M., Napolitano H. B., Polikarpov I. & Craievich a. F. Determination of the molecular weight of proteins in solution from a single small-angle X-ray scattering measurement on a relative scale. J. Appl. Crystallogr. 43, 101–109 (2009).

Weinkam P., Pons J. & Sali A. Structure-based model of allostery predicts coupling between distant sites. Proc. Natl Acad. Sci. USA 103, 6 (2012). PubMed PMC

Schneidman-Duhovny D., Hammel M. & Sali A. FoXS: a web server for rapid computation and fitting of SAXS profiles. Nucleic Acids Res. 38, W540–W544 (2010). PubMed PMC

Dolinsky T. J. et al.. PDB2PQR: expanding and upgrading automated preparation of biomolecular structures for molecular simulations. Nucleic acids Res. 35, W522–W525 (2007). PubMed PMC

Baker N. A., Sept D., Joseph S., Holst M. J. & McCammon J. A. Electrostatics of nanosystems: application to microtubules and the ribosome. Proc. Natl Acad. Sci. USA 98, 10037–10041 (2001). PubMed PMC

Armougom F. et al.. Expresso: automatic incorporation of structural information in multiple sequence alignments using 3D-Coffee. Nucleic Acids Res. 34, W604–W608 (2006). PubMed PMC

Robert X. & Gouet P. Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Res. 42, W320–W324 (2014). PubMed PMC

McWilliam H. et al.. Analysis Tool Web Services from the EMBL-EBI. Nucleic Acids Res. 41, W597–W600 (2013). PubMed PMC

Kearse M. et al.. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647–1649 (2012). PubMed PMC

Karplus P. A. & Diederichs K. Linking crystallographic model and data quality. Science 336, 1030–1033 (2012). PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...