A proteomic approach to the development of DIVA ELISA distinguishing pigs infected with Salmonella Typhimurium and pigs vaccinated with a Salmonella Typhimurium-based inactivated vaccine
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
PubMed
27835998
PubMed Central
PMC5106837
DOI
10.1186/s12917-016-0879-1
PII: 10.1186/s12917-016-0879-1
Knihovny.cz E-zdroje
- Klíčová slova
- DIVA vaccine, Mass spectrometry, Porcine, Recombinant protein, Salmonella Typhimurium,
- MeSH
- antigeny bakteriální metabolismus MeSH
- ELISA veterinární MeSH
- inaktivované vakcíny imunologie MeSH
- nemoci prasat diagnóza imunologie MeSH
- prasata MeSH
- proteomika * MeSH
- protilátky bakteriální krev MeSH
- Salmonella typhimurium genetika MeSH
- salmonelová infekce u zvířat diagnóza imunologie MeSH
- salmonelové vakcíny imunologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antigeny bakteriální MeSH
- inaktivované vakcíny MeSH
- protilátky bakteriální MeSH
- salmonelové vakcíny MeSH
BACKGROUND: Salmonella enterica serovar Typhimurium is one of the most common enteropathogenic bacteria found in pigs in Europe. In our previous work, we demonstrated the protective effects in suckling piglets when their dams had been vaccinated with an S. Typhimurium-based inactivated vaccine. This study is focused on a procedure leading to serological discrimination between vaccinated and infected pigs. As we supposed, distinct environment during natural infection and in bacterial cultures used for vaccine preparation led to a slightly different spectrum of expressed S. Typhimurium proteins. The examination of porcine antibodies produced after the experimental infection with S. Typhimurium or after vaccination with S. Typhimurium-based inactivated vaccine by affinity chromatography and mass spectrometry revealed differences in antibody response applicable for serological differentiation of infected from vaccinated animals. RESULTS: Antibodies against Salmonella SipB, SipD and SseB proteins were detected at much higher levels in post-infection sera in comparison with control and post-vaccination sera. On the other hand, proteins BamB, OppA and a fragment of FliC interacted with antibodies from post-vaccination sera with a much higher intensity than from control and post-infection sera. In addition, we constructed ELISA assays using post-infection antigen - SipB protein and post-vaccination antigen - FliC-fragment and evaluated them on a panel of individual porcine sera. CONCLUSIONS: The analysis of antibody response of infected and vaccinated pigs by proteomic tools enabled to identify S. Typhimurium antigens useful for distinguishing infected from vaccinated animals. This approach can be utilized in other challenges where DIVA vaccine and a subsequent serological assay are required, especially when genetic modification of a vaccine strain is not desirable.
Bioveta a s Komenskeho212 12 683 23 Ivanovice na Hane Czech Republic
Department of Immunology Veterinary Research Institute Hudcova296 70 62100 Brno Czech Republic
Department of Virology Veterinary Research Institute Hudcova296 70 62100 Brno Czech Republic
Zobrazit více v PubMed
Anonymous Analysis of the baseline survey on the prevalence of Salmonella in holdings with breeding pigs in the EU, 2008 – Part A: Salmonella prevalence estimates. EFSA J. 2009;7:1377. doi: 10.2903/j.efsa.2009.1377. DOI
van Oirschot JT. Diva vaccines that reduce virus transmission. J Biotechnol. 1999;73(I2–3):195–205. doi: 10.1016/S0168-1656(99)00121-2. PubMed DOI
Vico JP, Engel B, Buist WG, Mainar-Jaime RC. Evaluation of three commercial enzyme-linked immunosorbent assays for the detection of antibodies against Salmonella spp. in meat juice from finishing pigs in Spain. Zoonoses Public Health. 2010;57(Suppl 1):107–114. doi: 10.1111/j.1863-2378.2010.01364.x. PubMed DOI
Leyman B, Boyen F, Van Parys A, Verbrugghe E, Haesebrouck F, Pasmans F. Salmonella Typhimurium LPS mutations for use in vaccines allowing differentiation of infected and vaccinated pigs. Vaccine. 2011;29(20):3679–3685. doi: 10.1016/j.vaccine.2011.03.004. PubMed DOI
Zariri A, van der Ley P. Biosynthetically engineered lipopolysaccharide as vaccine adjuvant. Expert Rev Vaccines. 2015;14(6):861–876. doi: 10.1586/14760584.2015.1026808. PubMed DOI
Arenas J. The Role of Bacterial Lipopolysaccharides as Immune Modulator in Vaccine and Drug Development. Endocr Metab Immune Disord Drug Targets. 2012;12(3):221–235. doi: 10.2174/187153012802002884. PubMed DOI
Selke M, Meens J, Springer S, Frank R, Gerlach GF. Immunization of pigs to prevent disease in humans: construction and protective efficacy of a Salmonella enterica serovar Typhimurium live negative-marker vaccine. Infect Immun. 2007;75(5):2476–2483. doi: 10.1128/IAI.01908-06. PubMed DOI PMC
Bearson BL, Bearson SMD, Kich JD. A DIVA vaccine for cross-protection against Salmonella. Vaccine. 2016;34(10):1241–1246. doi: 10.1016/j.vaccine.2016.01.036. PubMed DOI
Matiasovic J, Kudlackova H, Babickova K, Stepanova H, Volf J, Rychlik I, Babak V, Faldyna M. Impact of maternally-derived antibodies against Salmonella enterica serovar Typhimurium on the bacterial load in suckling piglets. Vet J. 2013;196(1):114–115. doi: 10.1016/j.tvjl.2012.08.002. PubMed DOI
Wiśniewski JR, Zougman A, Nagaraj N, Mann M. Universal sample preparation method for proteome analysis. Nat Methods. 2009;6(5):359–362. doi: 10.1038/nmeth.1322. PubMed DOI
Jacobson RH. Factors in selecting serum samples for use in determining the positive/negative threshold (cut-off) in ELISA. Diagnosis and Epidemiology of Animal Disease in Latin America 1998. IAEA-TECDOC-1055, pp. 25–28. http://www-pub.iaea.org/books/IAEABooks/5352/Diagnosis-and-Epidemiology-of-Animal-Diseases-in-Latin-America.
Pasick J. Application of DIVA vaccines and their companion diagnostic tests to foreign animal disease eradication. Anim Health Res Rev. 2004;5(2):257–262. doi: 10.1079/AHR200479. PubMed DOI
Mirold S, Ehrbar K, Weissmüller A, Prager R, Tschäpe H, Rüssmann H, Hardt WD. Salmonella host cell invasion emerged by acquisition of a mosaic of separate genetic elements, including Salmonella pathogenicity island 1 (SPI1), SPI5, and sopE2. J Bacteriol. 2001;183(7):2348–2358. doi: 10.1128/JB.183.7.2348-2358.2001. PubMed DOI PMC
McGhie EJ, Brawn LC, Hume PJ, Humphreys D, Koronakis V. Salmonella takes control: effector-driven manipulation of the host. Curr Opin Microbiol. 2009;12(1):117–124. doi: 10.1016/j.mib.2008.12.001. PubMed DOI PMC
Marlovits TC, Stebbins CE. Type III secretion systems shape up as they ship out. Curr Opin Microbiol. 2010;13:47–52. doi: 10.1016/j.mib.2009.11.001. PubMed DOI PMC
Waterman SR, Holden DW. Functions and effectors of the Salmonella pathogenicity island 2 type III secretion system. Cell Microbiol. 2003;5(8):501–511. doi: 10.1046/j.1462-5822.2003.00294.x. PubMed DOI
Jaradat ZW, Bhunia AK. Glucose and nutrient concentrations affect the expression of a 104-kilodalton Listeria adhesion protein in Listeria monocytogenes. Appl Environ Microbiol. 2002;68(10):4876–4883. doi: 10.1128/AEM.68.10.4876-4883.2002. PubMed DOI PMC
Smith KD, Andersen-Nissen E, Hayashi F, Strobe K, Bergman MA, Rassoulian Barrett SL, Cookson BT, Aderem A. Toll-like receptor 5 recognizes a conserved site on flagellin required for protofilament formation and bacterial motility. Nat Immunol. 2003;4:1247–1253. doi: 10.1038/ni1011. PubMed DOI
das Gracas Luna M, Sardella FF, Ferreira LC. Salmonella flagellin fused with a linear epitope of colonization factor antigen I (CFA/I) can prime antibody responses against homologous and heterologous fimbriae of enterotoxigenic Escherichia coli. Res Micribiol. 2000;151:575–582. doi: 10.1016/S0923-2508(00)00227-8. PubMed DOI
Honko AN, Sriranganathan N, Lees CJ, Mizel SB. Flagellin is an effective adjuvant for immunization against lethal respiratory challenge with Yersinia pestits. Infect Immun. 2006;74:1113–1120. doi: 10.1128/IAI.74.2.1113-1120.2006. PubMed DOI PMC
Cummings LA, Rassoulian Barrett SL, Wilkerson WD, Fellnerova I, Cookson BT. FliC-specific CD4+ T cell responses are restricted by bacterial regulation of antigen expression. J Immunol. 2005;174(12):7929–7938. doi: 10.4049/jimmunol.174.12.7929. PubMed DOI
Lai MA, Quarles EK, López-Yglesias AH, Zhao X, Hajjar AM, Smith KD. Innate immune detection of flagellin positively and negatively regulates Salmonella infection. PLoS One. 2013;8(8):e72047. doi: 10.1371/journal.pone.0072047. PubMed DOI PMC
Hiles ID, Gallagher MP, Jamieson DJ, Higgins CF. Molecular characterization of the oligopeptide permease of Salmonella typhimurium. J Mol Biol. 1987;195(I1):125–142. doi: 10.1016/0022-2836(87)90332-9. PubMed DOI
Hagan CL, Silhavy TJ, Kahne D. β-Barrel Membrane Protein Assembly by the Bam Complex. Annu Rev Biochem. 2011;80:189–210. doi: 10.1146/annurev-biochem-061408-144611. PubMed DOI
Lee S-J, Liang L, Juarez S, Nanton MR, Gondwe EN, Msefula CL, Kayala MA, Necchi F, Heath JN, Hart P, Tsolis RM, Heyderman RS, Mac Lennan CA, Felgner PL, Davies DH, McSorley SJ. Identification of a common immune signature in murine and human systemic Salmonellosis. Proc Natl Acad Sci. 2012;109(13):4998–5003. doi: 10.1073/pnas.1111413109. PubMed DOI PMC
Desin TS, Mickael CS, Lam PK, Potter AA, Köster W. Protection of epithelial cells from Salmonella enterica serovar Enteritidis invasion by antibodies against the SPI-1 type III secretion system. Can J Microbiol. 2010;56(6):522–526. doi: 10.1139/W10-034. PubMed DOI